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INTRODUCTION 

The title of this thesis is: "Weakly Normal Surface Singularities 

and their Improvements". Let us try to explain this in an informal 

way. In the first place there is the titleword 'singularities'. 

Singularities are the objects of study of Singularity Theory, but 

unfortunately there is no definition of this last term. Let us say 

that Singularity Theory in the most general sense is about the 

interaction between the 'general' (i.e. non-singular, regular, 

smooth, ... ) and the 'special' (i.e. singular, exceptional). 

Fortunately the term 'surface' is more easily explained. By a 

surface we simply a mean two-dimensional (complex analytic) space. 

Such surfaces X can be obtained for example as the zero set of an 
3 . -1 k analytic map F: C __ _.., C, 1.e. X= F (0). We can ma e a 

picture of the real part ~ = {(x,y,z) e ~ 3 1 F(x,y,z) = O}, which 

often sheds considerable light on the nature of X. Below such 

pictures are shown of the simplest examples: 

F = z -
Ao 

F = z 2 

D 
00 

y 

···------~---

2 x.y 

F 
2 y2 + = z 

Al 

F = z2 .y - x3 

Qoo 00 
I 

., 

2 
X 

' 
.,,,,,,·••') 

F 2 = z 

A 
00 

F = x.y.z 

T 

y 2 

00,00,00 



A0 is an example where all points look the same: there are no 

singular points. A1 is the simplest example of a surface having an 

isolated singular point p. The other surfaces are examples of 

non-isolated singularities. The simplest one, A, consists of two 
00 

planes intersecting in a line, which is the set of singular 

points. In the cases D and Q we also find a line of singular 
00 00,00 

points. A difference between these two cases is that a 

neighbourhood of the point g for D resembles A , whereas this is 
00 00 

not the case for Q . Finally, 
00,00 

for T the set of singular 
00,00,00 

points is the union of the three coordinate axes, which has itself 

a singular point at p. 

The singular points of type A , D and T arise naturally 
00 00 00,00,00 

in the following way: Take a smooth projective surface Y and embed 

it in ~ 5 . Then take a general projection ~S --- ~ 3 . The image 

X of Y in ~ 3 will then have 'ordinary singularities', i.e of type 

A, D and T (see [G-H], Ch. 4). A is usually called 
00 00 00,00,00 00 

ordinary double line, D goes by many different names such as: 
00 

ordinary pinch point, Cayley Umbrella, Whitney Umbrella and even 

sometimes cuspidal point. (If one refers to D as an umbrella one 
00 

of course should insist on drawing the 'naked line' sticking out 

of the surface.) T is usually called the ordinary triple 
00,00,00 

point. 

Now we have some idea as to how surface singularities may look. 

For surfaces X in ~ 3 , as above given by an eguation F = 0, it is 

guite easy to explain the words 'normal' and 'weakly normal'. A 

surface X in ~ 3 is normal exactly when X has only isolated 

singular points. A weakly normal surface Xis allowed to have a 

one-dimensional singular locus I, but in a neighbourhood of a 

general point of I the surface X has to resemble A . Thus, all 
00 

the examples mentioned, with the exception of Q , are examples 
00,00 

of weakly normal surface singularities. The picture on the cover 

is another example. (Try to figure out an eguation for it!) 

Now we are left with the titleword 'improvements'. One 

could say that improvements are to weakly normal surface 

singularities as resolutions are to normal surface singularities. 

So one might well speak of 'weak resolutions' instead of 

'improvements'. 

Resolution is a process which converts local data of a singularity 



into global information of a smooth space. As an example, take A
1

. 

A resolution of A1 is obtained by blowing up the singular point p. 

In this process, the singular point p of A
1 

is replaced by a 

projective line ~ 1, lying in the blown up space, which in this 

case turns out tobe smooth (~ cotangentspace to ~ 1 ). 

So a resolution of anormal singularity (X,p) is a smooth space Y 

together with a map TI: Y X, which contracts a certain 

compact one-dimensional set E to the singular point p. 

An improvement of a weakly normal surface singularity Xis 

something similar: it is a space Y together with a map contracting 

a system of curves E to the special point p. But because X can 

have a one-dimensional singular locus, we should not ask Y tobe 

smooth. Instead we ask Y to have the simplest possible 

singularities. It turns out that in general one must allow Y to 

have so-called partition singularities which play an important 

role in this thesis. For example, for weakly normal X that fit 

into ~ 3 one has to allow A and D singularities on the improving 
00 00 

space Y. 

Let us give one example of an improvement: Take X= T . 
00,00,00 

X can be seen as the union of three planes, glued together along 

coordinate axes according to the following scheme: 
---------------------

One can obtain an improvement by first blowing up once in each of 

these planes: 



The advantage is that now the lines tobe glued have been 

separated. So the irnprovernent looks like: 

We see that there are three A -singularities on the irnprovernent Y 
00 

and the rnap Y ----+ X contracts the three ~ 1 s that intersect 

cyclically. 

Now that the rneaning of the title has becorne clear one rnigh~ 

ask the following: "What is the use of this all?" Well, in the 

first place it should be stressed that the irnprovernents, just like 

resolutions, appear really only as a tool to study a singularity. 

These weakly normal surface singularities thernselves are 

interesting basically for two reasons: 



1) Because they are there. 

Weakly normal surfaces form the 'simplest' class of 

non-isolated singularities. In the last decades there has been a 

considerable interest in isolated singularities. For hypersurfaces 

and complete intersections this has resulted in quite detailed 

understanding of their deformation theory and associated topology. 

For general normal surface singularities the theory has also 

reached a certain stage of perfection. A next step is to look at 

singularities with a one-dimensional singular locus. It is obvious 
' that if one does so, one should first handle the case in which the 

structure of the singularity transverse to the singular 

locus is as simple as possible. For hypersurfaces and complete 

intersections the natural choice is to start with transverally an 

A
1
-singularity. But if one wants to study non-isolated surface 

singularities it seems natural to start with the weakly normal 

ones, thus allowing also slightly more complicated transversal 

types. Although to presence of a one-dimensional singular set 

allows for many new phenomena to occur, it is my belief that for 

the weakly normal (Cohen-Macaulay) surfaces a theory can be 

developed to a level of detail that is comparable to the existing 

theory of normal surface singularities. 

2) Because of their relation with series of isola~ed 

singulari~ies. 

The notion of a series of (hypersurface) singularities was 

introduced by Arnol'd in a sweeping phrase: "Although the series 

undoubtely exist, it is not at all clear what a series of 

singularities is. 11 (See [Arn l], [A-G-V], p.243.) 

Let us give two examples of series: 

The series A: F = y.z 
n 

A1 ~~--

n+l 
X (n ~ 1) 

• • • 

Al.{ -E--<-- · · · A"° 



2 2 ~2 The series Dn: F = z __ x_. (y __ -: __ ]t_j (n ;!:; 4) 
---- ---------

M 
D ~<-4 

M 
--·------~---.--~-------------·-·- ---

• • • 

. . -

The arrows denote the relation of adjacency between two 

singularities, which roughly corresponds to the relation deforms 

into. It is clear that the limit of the series A is A and the n oo 

Now it turns out that the simplest types of limi t of D i s D n oo 

series that appear in the classification of isolated hypersurface 

singularities have as limits non-isolated singularities with a 

one-dimensional singular locus, transversal to which one finds an 

A1-singularity. For surface singularities, not necessarily in c 3 , 

the phenomenon of series also occurs. It appears that the series 

which have a weakly normal limit can be characterized as those 

series for which the geometric genus p
9 

is the same for all 

members of the series. Although it is almost never set out 

explicitly in this thesis, this idea is one of our main motivations 

for the study of the weakly normal surface singularities. 

Now that we know the subject tobe of interest, we can answer the 

question: "What can one find in this thesis?" Of course, the Table 

of Contents answers this question completely, but let me give the 

reader a rough indication of the most important topics: Chapter 1 

contains some generalities on weakly normal surfaces. Improvements 

are constructed with the help of a simple glueing construction. 

The partition singularities are introduced. Probably the most 

important theorem is about a very particular series of 

deforrnations to isolated singularities. Chapter 2 reviews the 

theory of the geornetric genus. For weakly normal surfaces a 

geometric genus is defined and its sernicontinuity under all flat 

deforrnations over a srnooth curve gerrn is shown. Chapter 3 sets up 

the cycle theory for improvements. The rnost irnportant results are 

the notions of roots and stable models and the realization that a 



satisfactory theory of the fundamental cycle is possible. Chapter 

4 is called 'Applications', but contains a beginning of the study 

of weakly rational and minimally elliptic singularities. Further 

there is the classification of the so called 'Gorenstein Du Bois 

surfaces'. The most significant result concerns the first Betti 

number of a smoothing of a weakly normal space; one of the few 

really general results. 

7 



CHAPTER 1 

WEAK NORMALITY AND IMPROVEMENTS 

In this chapter we describe basic constructions and notions 

that will be used troughout the text, frequently without mention. 

§ 1.1 introduces some properties an analytic space can have: 

Cohen-Macaulayness, normality and weak normality. 

§ 1.2 describes some aspects of the glueing process that will 

be of relevance in constructing improvements. 

§ 1.3 contains facts about the 11 building blocks 11 of every 

weakly normal surface: the partition singularities. 

§ 1.4 is about resolutions and improvements. 

§ 1.1 Preliminaries 

By a space we usually mean an analytic space, sometimes an 

algebraic scheme over an algebraically closed field of 

characteristic 0. As general references we use [G-Re], [Fi] and 

[Ha 2]. We write X, Y, ... for our spaces and vX, Vy for their 

structure sheaves. Most of the time we concentrate on local 

properties of X around a given point p e X. We will not always 

make a clear distinction between the germ (X,p) of X at p and an 

appropriate representative of the germ (usually a sufficiently 

small Stein neighbourhood of p e X). Sometimes we write II f e vX 11 

meaning either f e vX,p or f e H0(u,vx> where U is an appropriate 

representative of the germ (X,p). 

Cl.1.1) A point p e Xis called a smooth point of X if and 

only if Vx is a regular local ring. Around such a ,p 
point X looks like a smooth manifold. If this is not the case we 

call p a singular point of X. In a singular point one has a 

finite number of irreducible components coming together, each 

with their own dimension, and having as supremum dim(X,p), the 

dimension of X at p. A point p e Xis singular precisely when 

Embdim(X,p) > dim(X,p) where Embdim(X,p) = dim~('mp/'m~) and 'mp 

9 



is the maximal ideal of vX This Embedding dimension is the ,p 
smallest possible dimension of a smooth germ in which the germ 

(X,p) can be embedded. The set Sing(X) of all singular points is 

an analytic set. We call it the singular locus and denote it 

usually by I. When Xis generically reduced it is a proper 

subset of X. When t = {p} we say that X has an isolated 

point at p or X is an isolated singularity. singular 

The depth of X at p is the maximal length of a regular 

sequence in vX and is denoted by depth(X,p). One always has ,p 
depth(X,p) ~ dim(X,p) and when eguality holds we say that Xis 

Cohen-Macaulay at p. Freguently we will abbreviate this to 

"Xis CM". The Cohen-Macaulay condition is open and invariant 

under generic hyperplane section . There exists a nice relation 

between depth and local cohomology 

depth(X,p) ~ m <=> ge { ~} ( v X) = 0 i=l,2, ... ,m-1 

(see [S-T],Thm (1.14); [Gr],Thm (3.8)) which is convenient for 

computational purposes. The Cohen-Macaulay condition is rather 

strong: it implies for instance that all irreducible components 

have the same dimension, and much more. 

For every space there is a dualizing complex wx· , which 

can be defined (locally) as wx· = R"9e'em(vx,Qy[dimY]) , where 

X___.., Y is an embedding of X into a smooth germ Y and QY is the 

sheaf of top differentials on Y (see [R-R]). One can show that X 

is CM if and only if the complex wX reduces to a single sheaf 

-d 
:= WX (n = dim(Y), d = dim(X)) 

Fora CM-space X one defines the type, Cohen-Macaulay type or 

Gorenstein type tobe the number 

type(X,p) := dim~(wX /'ßlx .wX ) 
'LJ ,p ,p ,p 

If the type is 1 we say that Xis Gorenstein at p. Again, this 

is an open condition and is preserved under generic hyperplane 

section. So Xis Gorenstein iff wX,p~ vX,p. 

Examples of spaces which are Gorenstein are all hypersurface 

singularities or more generally complete intersections (see [Lo]). 

10 



Cl.1.2) Besides Cohen-Macaulayness, there is another kind of 

neatness property a space can have: normality. 
N 

On a reduced space X one defines a sheaf Vx consist~ng of all 

bounded holomorphic functions on X-I. Algebraically, vX can be 

characterized as the integral closure of vX in its total quotient 

ring, the ring of meromorphic functions on X. lt is a very 
N 

fundamental fact that vX is a coherent sheaf of vX - algebras 

(see [Na], [G-Re]). Hence one can define a space 

N 

X= Specan(vx> 

called the normalization of X. The natural inclusion 

= 

gives rise to a finite map n: X--~ X called the 

normalization (mapping). When the map n is an isomorphism we 

say that Xis normal . So a space Xis normal when the Riemann 

extension theorem holds for X. Fora normal space the codimension 

of I in X is ~ 2 and conversely when this is the case, 

normality of Xis equivalent to the cohomological condition 

9ei(VX) = 0 

(because then the boundedness of holomorphic functions on X-I is 

then automatic). So anormal space of dimension 1 is smooth and an 

isolated singularity of which all irreducible components have 

dimension ~ 2 is normal iff it has depth ~ 2. The normalization 

map n: X--• X has the following universal property: 

A map f : Y X with Y normal and f(Y) ~ I 

can be factorized through n. 

Because we add to the structure sheaf functions defined outside I 

which need not extend to functions on X (let alone continuous 

ones) normalization can be a quite drastic operation. The 

irreducible components of X become separated and every part of I 

in codimension 1 has to disappear. In other words, the underlying 

topological space of Xis altered drastically. 

11 



(1.1.3) A way to avoid this change in topology is clear: add only 

continuous functions to the structure sheaf. This leads 

to the notion of weak normality, as introduced by Andreotti and 

Norguet in [A-N]. One defines a sheaf Öx consisting of all 

continuous functions which are holomorphic on X-I. Again ~X 

is a sheaf of coherent vX - algebras and one can form the space 

X = Specan(~x> 

called the weak normalization of X. We get a finite analytic 

mapping w: X--~ X , which by construction is a homeomorphism 

of the underlying topological spaces. This weak normalization 

mapping w has the following universal properties (see [Fi]): 

1) w factorizes through every mapping Y --• X, which is a 

homeomorphism of underlying spaces. 

2) Every mapping Y --~X, with Y weakly normal, factorizes 

through w 

Because of the first property the weak normalization is sometimes 

called the maximalization. A space for which w is an isomorphism 

is called weakly normal. Often we will abbreviate this to 

"Xis WN". Normality and weak normality are open conditions and 

preserved under generic hyperplane sections (for weak normality 

this last statement is not so easy, because there is no obvious 

cohomological way to formulate weak normality (see [A-L], [Vi])), but 

contrary to the Cohen-Macaulay and Gorenstein conditions, this is 

in general not true if we require the hyperplane to pass through a 

special point p e X. 

As normalization, weak normalization can be done 

algebraically (see [A-B]), but in charateristic ~ 0 it gives rise 

to two different notions: weak normality and semi normality (see 

[Ad 1], [C-M], [G-T], [Ma]). 

(1.1.4) We mention two further operations to make a space 

"better" 

1) we can give a space 

structure sheaf vx to 

2) we can give a space 

at p 

at p 

by changing the 

by first throwing away 

the one-dimensional components and then changing the structure 

12 



* sheaf to i*i Ox where i : X-{p} --~Xis the inclusion map. 
There seems tobe no canonical way to give a space X higher depth. 

By a curve we will mean a (germ of a) space of dimension 1. 

By a surface we will mean a (germ of a) space purely of 

dimension 2, i.e having only two-dimensional components. 

By the above procedure we can define for curves and surfaces an 

operation of Cohen-Macaulification c: ~--• X , which is 
sometimes useful. Finally, we define the normalization and weak 

normalization for general X by taking the normalization or weak 

normalization of its reducuction Xred· 

The general structure of a WN - curve is easy to describe: 

(1.1. .. 5) P,:-oi,osi t i on : A germ (X,p) of a weakly normal curve is 
isomorphic to the germ of r lines in 

position in er, where r is the number of irreducible 

';,j{{};,c;~~ts of JC at p . So one has: 
\\\:,r~_:·,!lJ\/}~-"~ 

?,:;.;:·,:··\ j}Z:;is:i~/:·_ .. ":··, '.,. •;.· -, 

Mult(X,p) = r, type(X,p) = r-1 (r?::3). 

This is a nice exercise. • 

curve singularity is called Lr (see [B-G]). E'or r=l we have a r 
Single smooth branch, for r=2 we have an ordinary node (which also 

goes by the name A1 ). E'or r=3 a picture is shown below. 

Cl.1.6) Remark: The curve germs L~ can be characterized 
alternatively as the unique reduced curve 

germs (C,p) for which one has the equality 6(C,p) = r - 1, where 

6(C,p) is the delta-invariant (see (1.2.23)) and r the number of 

13 



irreducible components of the germ (C,p). 

A surface germ (X,p) which is both WN and CM is as close as 

possible to anormal germ without necessarily being so. This 

important class of spaces will be the main object of our study. 

(1.1.7) Definition Let (X,p) be a germ of an analytic space. 

We say that: 

1) (X,p) is AWN (almost weakly normal) if and only if X - {p} is 

weakly normal. 

2) (X,p) is WNCM if and only if Xis weakly normal and 

Cohen-Macaulay. 

Cl.1.8) Lemma Let X be (an appropriate representative of) a 

surface germ. Let t be its singular locus and 

p the special point. Then (X,p) is AWN if and only if X has the 

following normal forms around a point q: 

q E X - L 

q e L - {p} 

proof A hyperplane section trough a general point q oft is 

weakly normal, so from (1.1.5) it follows that it is 

(locally) isomorphic to Lr for some r (which may depend on the r 
irreducible component of I under consideration). As every 

topologically trivial family in which L~ appears is in fact 

analytically trivial (see [B-G]), we get the above normal form. • 

Let (X,t,p) be a germ of a WNCM-surface with 

singular locus t. Then exactly one of the 

following things is true: 

(1.1.9) Remark 

A. dim(t) = 0. Then t = {p} is the unique singular point of X. 

Xis then normal (and hence irreducible). 

B. dim(t) = 1 . Then r is (a germ of) a curve with possibly p 

as singular point. The irreducible components of X 

intersect each other in components of I (X-{p} is connected). 

, A 



The following lernma is convenient for proving that an AWN - space 

is in fact WN: 

(1.1.10) Lemma Let (X,p) be a germ of an analytic space. 

If X-{p} is WN and depth(X,p) ~ 2 then X 

itself is WN. 

proof If f is a continuous function on X, holomorphic outside 

the singular set I, then it follows from the WN property 

of X-{p} that f is in fact in vX-{p}' so by depth ~ 2 it follows 

that f e vx- • 

(1.1.11) Remark We refer to [A-H], lernma (16.1) for a 

general "weakly normal extension" theorem. 

(1.1.12) Corollary A hypersurface X c ~
3 is WN precisely when 

transverse to the singular locus we find 

generically an A1 - singularity (or X has isolated singularities). 

(1.1.13) Remark: General hypersurfaces with a one-dimensional 

singular locus, transverse to which one finds 

generically an A1- singularity, were studied recently in [Pe],[Sie 1] 

and [Sie 2]. 

All these hypersurface examples of course are Gorenstein. 

(1.1.14) Lemma: Let (X,p) be a Gorenstein WNCM-surface germ. 

Then transverse to the singular locus we find 

generically an A1-singularity (or X has an isolated singular 

point). 

proof : This is clear, because the Gorenstein property is 

preserved under hyperplane section, and Lr is a 
r 

Gorenstein curve only when r=l or 2. 

From now on, when we refer to a surface 

germ by writing (X,I,p), we will 

explicitly mean that dim(I,p) = 1, in order to avoid special 

(1.1.15) Convention 

mention of the case that (X,p) is an isolated singularity. 

, i:; 

• 



The converse of (1.1.14) is certainly not true. We give an example 

that will play a role in the sequel. (It also appears in [G-T].) 

(1.1.16) Example Let X be the surface germ at the origin in 

c 4 , given by the following system of 

equations: 

rank ( X 
z 

where x,y,z and w are coordinates on c 4 . 

y 
w z ) ~ 1 x.y 

This space has two irreducible components, given by the following 

systems of equations: 

X1 X= Z = 0 

rank ( X 
z 

y 
w 

z 
x.y ) s .1 

The second component can more easily be given parametrically as 

the image of c 2 under the mapping: 

(s,t) 2 3 (s,t ,s.t,t) 

Note that this component is not Cohen - Macaulay. 

The singular locus is x1 n x2 , so is given by the equations 
3 2 x = z = y -w = 0. It is easy to see that outside O x1 and x2 are 

transverse, so the transversal type is A1 . By the general theory 

of determinantal singularities (see also§ 1.3 ) it follows that 

Xis CM and has type 2, so is non-Gorenstein. We see that the 

normalization of X consists of two disjoint copies of c 2 , called 

x1and x2 . ;he inverse image of E under the normalization map will 

be called ! and consists of two components: one smooth curve in 

x2 and a component with a cusp in x1 : 
-~----·--

I 
) 

L 

Conversely, we can find X by glueing x1 to x2 along t. 

16 



§ 1.2 Glueing 

A fundamental problem is the following: When we consider a space X 

and an equivalence relation R on X, under what conditions can 

we give the set of equivalence classes the structure of a space? 

Here one should think of "space" in some categorial sense, like 

analytic spaces, algebraic spaces or schemes, and the quotient X/R 

is required to possess a universal property within the category. 

In general this problem is difficult and not many results are 

known (at least to me). 

In the category of ringed spaces one always can form the quotient 
1T 

by putting vX/R = 1r*vX, where X--• X/R is the quotient map. 

In the category of (reduced) analytic spaces there is one simple 

and often useful criterion in the case of 

relations (i.e. in the case that X 

proper equivalence 

X/R is a proper map) due 

to H. Cartan (see [Ca]): 

(I.2.1) Theorem Let X be an analytic space and Ra proper 

equivalence relation on X. 

Then (X/R, vX/R) is an analytic space if and only if vX/R 

locally seperates the points of X/R (i.e. for all x e X/R there is 
0 

an open u 3 x such that for all y, z e U there is an f e H (U,vX/R) 

with f(y) # f(z)). 

A special case 

the push-out 

maps p: T 

of the quotient construction is the formation of 

or fibered sum of two spaces. In that case two 

Y and q: T Z are given and we ask 

for a space X := y LI z making a commutative 
T 

(1.2.2) Diagram: 

T y 

l l 
z X 

17 



having the universal property as suggested by the diagram. 

The situation we have in mind is the following: Consider a space 

X(=Y) and a subspace r (=T) ----. X together with a finite 
N 

surjective map r ---+ r (=Z). The push-out space X we call the 

space obtained from X by glueing r to r. 
This situation in particular arises when we consider the 

normalization X n X of a space X and put r = Sing(X), 

r = n-1 (r). 

On the level of structure sheaves we have to consider a diagram 

dual to (1.2.2). For simplicity we assume that the natural map 

<Or ----+ n*<OI is an inclusion, and we suppress the n* from 

the notation. Thus we write <Or s öi and tacitly consider all 

sheaves as living on X. 

(1.2.3) Diagram: 

/J c---• 

tl c.__ _ __,. 

In this diagram tf = ker(<OX ---+ öi) is the ideal sheaf of r 

and ~ = <Ox/<Ox = öi/ör is a certain <Or - module which we call 

the glueing module of the situation. 

The corresponding situation for the (local) rings is handled by: 

(1.2.4) Lemma Consider the pull-back diagram of rings: 

I -<---.• R s 

15 
I 

r 
R 1T 

r 
s 

Then, if S is a finitely generated S-module, then R is a finitely 

generated R-module. 
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proof: This is trivial, but let us spell out the proof. Let 
N N N 

~l = 1, w2 , ... ,~k be genera:ors ofNS a~ s-module: Lift 

them to e~ements w1 = 1, $2 , ... ,$kNe R. Let r e R. As the ~i 

generate S over S, we can write TI(r) = E $ .• s. , s. e S. Choose 
1N 1 l. 

elements r. such that TI(r.) = s .. Then TI(r - E ~ .. r.) = O, 
N l. l. Nl. N l. :k. 

hence r - t $i.ri e I c R. So r = $ 1 .(r - E ~i.ri) + Ei=2 wi.ri, 
hence the $. generate R over R. 

l. 
• 

In the above situation, assume that S is a 

finitely generated S-module. Then if R is a 

finitely generated k-algebra or a (semi-) local analytic ring, then 

(1.2.5) Corollary: 

N 

the same is true for the ring R. The argument is well known: R is 

finite over the subring of R generated by the coefficients of the 
N 

integrality eguations of the algebra generators of Rand this 

subring is noetherian and R is finite over this subring. 

In the category of analytic spaces (or 

schemes of finite type over a field k) 

we can form the push-04t as in diagram (1.2.2) if p is an 

inclusion and q is a finite map. The resulting map Y 

CI.2.6) Conolusion: 

is finite. 

X 

CI.2.7) Example: Take a line and identify two infinitesimally 

near points. ---------------------~----

t '-'C-----~) 

• CL.------~-,,-
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This corresponds to the following diagram of rings: 

(x2,x3) < <C[x2,x3] <C 

Jsi I I 
C: <C [ x] <C [ x] / (x2 ) 

So indeed the push-out has a cusp as singular point. 

( c. f. [Se] , p. 70) 

(1.2.8) Example Take a line in a plane and identify this 

line to a point. In this case the conditions 

of (1.2.6) are not fulfilled, because the line is not mapped 

finitely to the point and indeed the push-out does not exist as an 

analytic space. 

In practice it will be useful to have an explicit set of 

generators for the pull-back ring R. We consider the case that R 
N N 

and S are (semi-) local analytic rings and S is module-finite over 
N N 

a local analyt~c ring S = <C{~iJ . We lift the elements ~l to 

elements ~l e Rand take as in (1.2.4) liftings ~- of generators 
N ] 

of S over S. Finally, we let fk be generators of the ideal I (all 

except ~1=1 assumed tobe in the Jacobson radical). For simplicity 

of notation we suppress the index ranges. 

(1.2.9) Lemma Consider the local analytic algebra 

Then: R = R 

proof lt is clear that R c R. Let x e R. Then we can write 
N 

a .. f.+ P(~-) , with a
1
. e R, and P analytic in the 

J. J. J 

~j•s, so P(~j) e R. Now we can expand the ai's 

ai = 2 bij.fj+ 2 Qik(~)-~k, with bij e R, and Qik e R. 
When we substitute this in the above expression we get: 

20 



The last two parts are in the ring R, and continuing this way we 

see that one has the following approximation property: 

R = n 00 {R + In) 
n=l 

When we know that R is a finite R-module, we are finished by the 

noetherianity of R. Consider still another ring: 

A := C{~i,fk} s R s R s R 

Now by the preparation theorem {see[Na],thm 1), a module M over A 

is finitely generated if and only if M/m.M is of finite dimension 
N 

over A/m, where m is the maximal ideal {~-,fk) of the ring A. So R 
N 1 

is finite as A-module if and only if R.m contains a power of the 

Jacobson radical. But in our situation this is clear, because 
N N 

S.(~i) contains a power of its radical, as S is finite over S. • 

Cl.2.10) Remark In the case of finitely generated algebras 

over a field k, it really can happen that R 

is not a finite module over R, so in that case (1.2.9) is not true. 

0ne needs some kind of completion of R along I. 

Let us redo example (1.1.16) by glueing and using (1.2.9): 
N N 

functions on X= x1 U x2 are pairs of functions 

{f,g) e <C>x X <C>x = C{u,v}xc{s,t}. 
1 2 

Generators for !f 

Generators for <i:>I 

Generators for <i:>i as OI- module 

2 3 (u - v ,0) , (0,s) 

3 2 (u,t ) , (v,t } 

(0,t) , (1,1) 

So by (1.2.9} generators of the local ring <i:>X of the glueing space 

are: 

2 3 (u - V ,0) 

w 

(0,s) 

X 

(0,s.t) 

z 

The middle element (u2 - v 3 
,0) is redundant, as one has the 

following identity: (u2 - v 3 ,0} = (u,t3 ) 2 -(y,t2 ) 3 

It is not difficult to show that the ideal of relations between 

the elements x,y,z,w is the ideal of 2x2-minors of the matrix of 

(1.1.16), so the space obtained by glueing is the same we started 
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with. 

n Given any finite mapping X 

which are generically isomorphic, 

consider X as obtained from X 

X between two spaces, 

there is a canonical way to 

by glueing along a subspace. 

N 

(1.2.11) Definition: Let n: X ---+ X be a mapping. 

The conductor of n is the <Dx 
ideal{sheaf) ~= 

'e := Ann<D (nf<<Dj'cf<Dx) = {g E <Dxl g.<Dx s <Dxl = geq,m,(!)(nf<<D.x,<Dx> 
X X 

Fora finite map between reduced spaces we always consider <Dx s <D.x 
and then ~ is also an ideal in <D.x. ~ can be characterized as 

the biggest <Dx-ideal which is also an <D.x-ideal. 

In this situation we put: 

____ I _:=_ sup1:i?t) , ____ <01: :=<C>X/'e 

I : = supp ( v i ) , 

N 

We call I and I the glue-loci with their conductor structure. 

It is now a tautology that X can be considered as obtained from X 

by glueing I to I, i.e. we have a diagram as (1.2.3). 

(1.2.12) 

N 

depth(t,q) 

n Lemma: Let X ---+ X be the normalization map. 

When depth(X,p) ~ 2, then depth(t,p) ~ 1 and 

~ 1, where I, i are as above and q = n- 1 (p). 

proof: This is because the conductor is a geq,m,, so has depth ~ 2 

as soon as X has (see [Schl], lemma 1). 

(1.2.13) Lemma Let X be a reduced analytic space and let 

X n X be the normalization mapping. 
N 

If Xis weakly normal, then ~ c <D.x is a radical ideal, so I and 

I are reduced. 

• 

Proof: Let f e rad(~), then fli = 0. But then g.f I = 0 and 

functions vanishing on I certainly descend lo continuous 

functions on X, hence f-<Dx C <Dx- So f E ~ / giving ~ = rad(~)- • 
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(1.2.14) Remark: The converse of (1.2.13) is unfortunately 

not true: the conductor can very well be reduced 

without X being weakly normal. An example is 

2 3 4 6 
Vx = C{y, x.y, X .y, X .y, X, X} C C{x, y} = Vx-

The conductor is the ideal (y) which is clearly a radical ideal, 
2 but x ~ vx so Xis not WN. 

(1.2.15) Remark Given a mapping Y X one can look at 

the canonical equivalence relation R := YxY 
N X 

c YxY induced by this map. Eor a WN space and X ---+ X the 

normalization map, the space R is reduced (see [A-H],(15.1.1)) 

andin the example under (1.2.14) R is not reduced. However, there 

are spaces which are not WN but have reduced R. An example is 

X= {(x,y,z) e c 3
1 z 3 - x.y3=0} 

It can be shown (see[Ma]) that the weak normalization X 
can be obtained as the quotient of its normalization X by the 

reduction R d of the canonical equivalence relation R. So it may re 
very well happen that the quotient of X with respect to the 

N 

canonical equivalence relation R obtained from X ---+ X, is 

not isomorphic to X(!). This is the reason why I prefer to glue 

with the conductor. One can ask whether it is true that when X has 

a reduced conductor, then Xis WN around a generic point of I. 

Let us now consider the question of Cohen-Macaulayness of the 

push-out space X. This can be discussed conveniently with the use 

of diagram (1.2.3). We study the situation around p e X. We take 

local cohomology of (1.2.3). This gives a diagram with exact rows: 

(1.2.16) Diagram: 

i 
H{~}(VX) 

i i+l 
---+ H{p}<vx> H{p} (:9 ) H{p}<vx> 

l l l~ Jl 1 
H{;} (Vi) 

1 ) ---+ H{p} (VI) H{p}(~ H{p} (VI) 
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(1.2.17) Proposition Let I X be a glueing diagram 

l 
X 

Assume that Xis CM of dimension n ~ 2, that I and I are CM and 

that supp(~}=I~~- Then equivalent are: 

l} Xis CM 

2) ~ is a maximal CM vI-module and dim(I) = n - 1 

3) H~;;<~)=O and dim(I) = n - 1 

proof: If X is CM of dimension n, then H{!}<vx.)=O, i=O, ... ,n-1. 

From the top row of (1.2.16} we then see: 

i i-1 . _ 0 _ 
H{p} <vx> ~ H{p}(~), 1-1, ... ,n-1, (H{p}<vx)-0) 

so X is CM precisely when H{;}(~)=O for i=O, ... ,n-2. This 

implies that dim(I)=n-1, because supp(~)f~. (By [Gr], prop. 6.4 

one always has H{:}(~) f O with k = dim(supp(~)).) and hence ~ is 

a maximal CM vI-module, proving 1) • 2). 

The implication 2) • 3) is trivial. 

If I and I are CM of dimension n - 1, then it follows from the 

bottom row of (1.2.16) that H{;}(~)=O, i=O, ... ,n-3, so the 

condi tion Hn-Z (~) gi ves the implication 3) • 1). • 
{p} 

Cl.2.18) Remark There is one noteworthy case in which the 
n-2 condition H{p}(~)=O of the above 

proposition is automatic: the case in which the exact sequence 

0 0 

splits as a sequence of vI-modules. Then the associated long 

exact local cohomology sequence of (1.2.16) splits into short 

exact sequences, and thus from the fact that I and I are CM one 

can draw the conclusion that H~;;<~). 

In particular, if I is normal this is true, as in that case the 

above sequence is split by the trace map 
vN tr 

I 
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(1.2.19) Corollary Let (X,p) be a surface germ, assumed tobe 

pure and reduced. 
N 

Let 
}: __ __. X be the glueing diagram of the normalization map 

1 
}: __ __. 

X n X. Then Xis CM if and only if: 

N 

If Xis CM, then I and I are CM-curves. 

proof : The first statement is just a special case of (1.2.17). 

The second statement follows from (1.2.12). 

Although reduced conductor is not enough to conclude weak 

normality, there is a description of WNCM surface germs (X,I,p): 

(1.2.20) Theorem Let (X,I,p) be a surface germ. Let 

X n X the normalization and 
N -1 
I=n (I). Then equivalent are: 

1) Xis WNCM. 

2) Xis purely two-dimensional, I and I are reduced curves, and 
0 -H{p} (:g )-0. 

proof: 1) • 2): This is a combination of (1.2.13) and (1.2.19) 

2) • 1): The fact that Xis CM follows from (1.2.19). 

• 

By (1.1.10), to prove that Xis WN, it is sufficient to prove that 

X-{p} is WN. But away from p, we may assume that the map 
N N -1 N N 

I __ __. I is unbranched. As I-n (p) c X-Sing(X), we have a 

standard situation above x e I-{p}, giving after a simple 

computation the normal form of (l.1.8). • 

We now give another interpretation of the condition "H{~}(~)=O" 

For this purpose assume that we are in the situation (1.2.20). 
N N 

Consider the normalization maps A __ _,, A and I __ __, I. By 

the universal property of the normalization, the composed map 
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N 

A I can be lifted to a map A A. 

These maps fit into a diagram with exact rows and colomns: 

(1.2.21) Diagram: 

rD c:: I •'ll A >•'D A/rD r. 

r r l 
(ON~ 

I •VA ,.vA/roi 

! l 
:g I '§ A 

From this one deduces by the snake lemma the exact sequence: 

0 

where '!K. :=ker(:gI 

Cl. 2. 22) Lemma 

proof : As '!K. s rDA/rDI 

Now let p:A 

0 we see that '!K. is torsion, so '!K. s ge{p} (:gI). 

I the normalization map. Then 
0 

ge{p} ( p„:g A), because roll --- rDA --- :gA is split by 
normality of A (see (1.2.18)). From this one gets exact sequences: 

0 

and 0 

0 
So '!K. = ge {p} ( '!K.) • 

(1.2.23) Definition Let (C,p) be a reduced curve germ and 
N 

let C n C be the normalization 

map. The delta-invariant 6{C,p) is the number 

c5 (C,p) : = dim<C {n„rDc/rDc)p (= dim<C (rDclrDc) ) 

This 6-invariant of a curve is a simple and very important 

invariant. lt is also called the "virtual number of double points" 

(see also§ 2.1). Fora general reduced curve C we put: 

6(C) = E p e C 6(C,p) 
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(1.2.24) Corollary Let (X,1:,p) be a WNCM-surface germ. Let 
N 

X n X be as usual the 

normalization map and 
N -1 
1:=n (1:). Then: 

6(1:) ~ c5(I) 

0 -This is because for such a surface one has by (1.2.20) ge{p}(~)-0, 

and so by (1.2.22) ~ = 0. This just means that the map 

OA/Or --- OA/Oi is injective. The dimension of the first 

space is 6(1:), of the second it is 6(1:). 

(1.2.25) Example We will give a class of examples of WNCM

surfaces. In general one can do the 

following: take a CM space X, a codimension 1 CM subspace Ion 
N 

which a group G acts and let I __ __.., I:= I/G be the quotient 

map. Then the push-out X will be a WNCM-space (OI is 

split by the group action). 
N 2 N 

We consider here the most simple case: X= C, I a curve in X with 

equation f(x,y)=O, and G = Z/2. We may assume that G acts on c 2 , 
and as a linear automorphism. Hence we can distinguish four cases: 

x,y x,-y 
A. 

f invariant 

x,y x,-y 
B. 

f anti-invariant 

x,y -x,-y 
C. 

f invariant 

x,y -x, -y 
D. 

f anti-invariant 

} 

} 
} 
} 

2 f = y.F(x,y) 

2 2 f = F(x ,x.y,y) 

2 2 2 2 f = x.G(x ,x.y,y) + y.H(x ,x.y,y) 

Using (1.2.9) we can write down a set of generators for the ring 

of the push-out. The result is: 

Case A. Generators: U=x Y=y2 Z=y.F 

Relation z2=Y.F(U,Y) 2 

Case B. Generators: U=x Y=y2 Z=y.F 

Relation z2=Y.F(U,Y) 2 
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So these cases are really the same; an anti-invariant splits off a 

factor y, whose image in X does not correspond to a component of 

the singular locus. 

Case C. Generators: U=x 2 Y=y 2 Z=x.y S=x.F T=y.F 

Relations : z2=U.Y Z.S=U.T Z.T=Y.S 

s2=U.F2 S.T=Z.F 2 T2=Y.F2 

From the structure of these relations it is clear that we can 

write every polynomial P(U,Y,Z,S,T) modulo these relations 

uniquely as P = a(U,Y) + b(U,Y).Z + c(U,Y).S + d(U,Y).T. From 

this it follows that the above equations generate the ideal of 

relations between the generators. The elements U,Y forma system 

of parameters; the multiplicity of Xis 4 and its Gorenstein type 

is 3. It is never determinantal (see (1.3.9)). 

Case D. Generators: U=x2 Y=y2 Z=x.y S=f 

Relations: z2 = U.Y s2 = U.G2+ 2.Z.G.H + Y.H2 

Modulo these two relations every polynomial P(U,Y,Z,T) can be 

written as P = a(U,Y) + b(U,Y).Z + c(U,Y).S + d(U,Y).S.Z . Again 

we find that {U, Y} is a system of parameters for the ring and 

that the two equations generate the ideal of relations. Hence Xis 

a complete intersection of multiplicity 4 in c 4 . (The element w = 

dxAdy/f can be considered as a generator of the dualizing sheaf 

on X). 

D. Mond [Mo] has given a list of mapping 

from c 2 to c 3 , which are simple with 

respect to left-right coordinate transformations. Finite 

(1. 2. 26) Remark 

determinacy for such maps comes down to weak normality of the 

image. All simple germs happen tobe of corank one, so can be 

written as 

(x,y) --~ (x,p(x,y),q(x,y)) 

For those of multiplicity 2 one can take p(x,y)=y2 ,q(x,y)=y.f(x,y2 ) 

so these are precisely the above singularities of type A/B. Such a 

singularity happens tobe simple exactly when the curve f(x,y)=O 

is simple in the ordinary sense, and has Z/2-action (see [Arn 2]). 

Besides these there is one other series of simple mappings in his 
3k-l 3 

list and is called Hk: (x,y) --- (x,x.y + y ,y ). 

?A. 



We will discuss this singularity and related families in higher 

codimension in (2.3.8). 

Cl.2.27) Conjecture An AWN-surface germ is algebraic. 

By this we mean that an analytic germ 

(X,p) c (~n,0), with X-{p} weakly normal, can be defined by 

polynomials after an appropriate analytic coordinate 

transformation. This is known for general spaces with an isolated 

singular point, by theorems of Artin, Tougeron,and Bochnak 

(for references see [Pe]). From a theorem of Pellikaan (see[Pe]) 

it follows in particular that the conjecture is true for surfaces 
in ~ 3 . Theorem (1.2.20) states that the study of WNCM-surface 

germs Xis equivalent to the the study of diagrams 
,., 
I i ,., 

X 

l 
----·--------

wi th certain properties. This leads to a strategy to prove the 

stated conjecture: 

Step 1. X,I and I being a priori analytic spaces with isolated 
singularities, are in fact analytically isomorphic to 

germs that can be described by polynomial ideals, by the above 

mentioned theorem. 

Step 2. The maps i and n are analytic maps between spaces with 

isolated singularities. The following should be true: 

Any pair of maps (i' ,n') sufficiently near to (i,n) is conjugate 
,., ,., 

to (i,n) by an automorphism of X,I,I (finite determinacy). 

Step 3. Artin's approximation theorem should then 

garantee the existence of an (i' ,n') conjugate to (i,n) 

in the Hensel functions, and hopefully even in the polynomials. 

Step 4. The push-out is then analytically isomorphic to a space 

defined by a polynomial ideal. 

Maybe this scheme can be made to work. But then we are confronted 

with the more general and natural 

Question: Is every analytic space {X,p) with the property that 

(X,q) is algebraic for q#p, algebraic at p? 
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§ 1.3 The Partition Singularities 

We introduce a particularly simple class of weakly normal 

Cohen-Macaulay surface singularities, which we call partition 

singularities. These spaces can be considered as generalizations 

of the singularities A and D in higher embedding dimension. The 
00 00 

partition singularities play a fundamental role in the theory of 

WNCM-surface singularities, as they appear as unavoidable 

singularities on an improvement (§ 1.4). 

(1.3.1) Definition of a partition singularity: 

Let ~ = (a(l),a(2), ... ,a(k)), a(i) e ~, be a partition of the 

number a := E a(i) into k parts. 

Let Xi, i=l, ... ,k, 

(u.,v.), and put I
1
. 

1 1 

be a copy of ~ 2 , equipped with coordinates 
N 

= {v. = O} c X .• 
1 1 

Let I be a copy of ~, with coordinate u. Consider the mapping 

I := LI I. 
1 

Put X:= LI X. 
Ni 

finite map I 

§ 1.2 (1.2.6) 

a(l) a(2) a(k) I, given by u = (u1 , u 2 , ... ,uk ). 

We have an inclusion map I X and a 

I , so we can form the push-out as in 

N 

I X 

l J l 
I X 

The space X=: X 
~ 

we call the partition singularity of type~ or 

the ~-partition 

(X,I,p) locally 

of that type. 

singularity. Further, we also call every germ 

analytic isomorphic to X a partition singularity 
~ 

Cl.3.2) Definition: Let X be a partition singularity, with 
~ 

~ = (a(l), a(2), ... , a(k)). Then the 

image the line u. = 0 on X will be called ~he special line L .. So 
1 ~ 1 

on X 
~ 

of X 
~ 

there are k special lines Li, on every irreducible component 

one. The special lines are transverse to I. 

30 



(1.3.3) Lemma: Let (X,t,p) WNCM-surface germ. Then Xis a 
N N 

partition singularity iff X and E are smooth. 

proof : As Xis CM and t is smooth, it follows from (1.2.24) that 

Eis also smooth. Choosing an appropriate neighbourhood of p in t 

we may assume that the map E --~ t branches at most over p. 
N 

As Xis smooth, we can find coordinates bringing this map into 

normal form, as in (1.3.1). 

(1.3.4) Lemma The ring of functions X 
1T 

is generated by 

X·-( a(l) a(2) a(k)) .- ul ,u2 , ... , uk 

y .. :=(0, ... ,0, u.j.v.,0, ... ,0) 
1,J 1 1 

i=l,2, ... ,k 
j =O , 1 , . . . , a ( i ) - 1 

So in total we have a + 1 generators, giving a (minimal) 
embedding of X,r ___ ~a + 1 

proof: 0ne can use (1.2.9) to find that the x and y .. 
1,J 

generate the local ring of X . The minimality is 
1T 

• 

evident from the explicit form of the generators. • 

Examples (1.3.5) 

1T = (1) 2 X(l)~ ~, so this not really a singularity. This is a 

reason why partition singularities with a '1' 

appearing in ,r , behave slightly different from the other 

partition singularities. 

,r = (1,1) 

1T = (2) 

A 
00 

~D 
00 

• = (1,1,1) x, = WN [ 

• = ( 2, 1 ) X, = WN [ 

1T = (3) No picture available. 

] 
] 

(Here WN means: 'weak normalization of' .) 
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(1.3.6) Lemma If n ~ 2 the ideal of X(n) is generated by the 

2x2-minors of the matrix: 

M = [ Yo Y1 Yn-2 Yn-1 ] Y1 Y2 Yn-1 x.yo 

Here y . . - y in the notation of (1.3.4). .- 1 . J. , J. 

proof Let Y be the variety defined by the 2x2-minors of the 

matrix M. lt is clear that X(n) s Y. As X(n) and Y are 

both CM and are generically equal, it follows that X(n) = Y • 

Alternatively, the elements x and y 0 forma system of parameters 

for the coordinate ring of Y: every element Pin this ring has a 

unique representation as P = E ai(x,y0 ).yi + b(x,y0 ). Pulling this 

back to the normalization of X(n)' it is seen that P = 0 is 

equivalent to ai = b = 0 

(1.3.7) Corollary Mult(X) = a 
'Ir 

, type(X,r) = a-1 (,r#(l)) 

As the general X,r is obtained by joining X(a(i)) along their 

singular line, the ideal of X is generated by the following 
'Ir 

system of 

(1.3.8) 

A) 

B) 

Equations: 

rank ( 
y. 0 J. , 

y. 1 J. , 

y. 1 J. , 

Yi,2 

= 0 

Yi,a(i)-2 

Yi,a(i)-1 
Yi,a(i)-1] ~ l 
x.y. 0 J. , 

p=0,1, ... ,a(i)-1 
q=0,1, ... ,a(j)-1 

i,j=l,2, ... ,k; i#j 

So in total we have a.(a-1)/2 generators for the ideal. This is 

equal to the numbers of 2x2-minors of a 2xa matrix. 

Is X "determinantal" ? 
'Ir 

A singularity is called determinantal if 

its equations can be written as the 

mxm-minors of an pxq-matrix and if it has the same codimension as 

(1.3.9) Definition 

the generic determinantal singularity (=(p-m+l).(q-m+l)), see 
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[Lak], [Scha 1]). So a determinantal singularity can be seen as the 

pull-back of the generic determinantal singularity under a 

transversal map. They are Cohen-Macaulay and their projective 

resolution is known. For example, complete intersections are 

determinantal (m=p=l), but also every CM space of codimension two 

is (m=p=q-1, "Hilbert's theorem", see [Scha 1]). 

Define 

M (Y) [ Yo 
= n - Y1 

M1(!) [ Yo 
= 0 

where X denotes a sequence 

Let Ai e Aut(o:' 1 ) 

a. 
]. 

c. 
]. 

= PG12 (<C) 

Y1 Yn-2 Yn-1 

Y2 Yn-1 x.y0 

] 
of variables Yo, Y1 , • • • I 

I i=l,2, ... ,k and write 

Consider the following ax2 matrix M,r = M,r,A(X) 

] n > 1 

Yn-1· 

( i ) 
where Y denotes the set of variables Y .. , j=0,1, ... a(i)-1. 

]. / J 

CI.3.10) Proposition: In a neighbourhood of Oe <Ca+l, the 

ideal of X is generated by the 
1T 

2x2-minors of the matrix M if and only if the points 
1T 

pi= (ai:ci) = Ai. ( ~) e ~
1

, i=O,l, ... ,k are all distinct. 

Proof There are two kinds of 2x2 minors: 

) . . 1 . M . (Y(il) a minors invo ving one a{i) 

b) minors involving two M 's. a 
The minors of type a) give just part A) of the equations (1.3.8), 

because we assumed the Ai tobe non-singular. For the minors of 

type b) we have to study the mixed minors of, say 
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After performing the linear transformation A;1, we may assume that 

a 

C 

d 

d 
) , with c • o, A2 = [ 

1 

0 

0 

1 
) . 

All mixed minors have the form I: w. _k,l.y~ 1>.y~ 2>, with 
k 1 i,J i J 

Wi . ' e C{xJ, depending linearly on a,b,c,d. So these minors 

ge~~rate the same ideal iff det(W. _k,l) is a unit in C{x}. For 

a = b = d = 0 this determinant is
1

~~en tobe equal to ca(l).a( 2 ), 

so a unit in C{xJ. For a,b,d small this remains true and by 

homogeneity the result follows. • 

The importance of representing X as a determinantal singularity 
1f 

is that it enables us to construct flat deformations of a very 

special kind, by perturbing the entries of the matrix 

( see [ Scha 2] ) . 

Recall that A
00 

and D
00 

give rise to the series Ak and Dk 
- ·----------·--

• • • 

A, Ai Ä 3 A'-, Aoo 
·-----

M ro • • • 
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The corresponding resolution graphs (§ 1.4) look like: 
--- - ·-·--- --------------·---------------- --·--·-------·-

• • • • • • • • 

----- -------- ----------- ----
-----~---------- - -- --------------------- ---~- ... < .... < 

We are going to exhibit a deformation of X~ , ~=(a(l),a(2), ... a(k)) 

into an isolated sin_<JU!~r point with resolution graph: --------
---------- - ---

--- ~--- ----

cl.( i,) 
___ A 

,-r 
• • 

There is is a central ~l, with self-intersection -a, and 

k branches coming out of this. Each branch splits up into two 

"legs": one with length a(i), the other with an arbitrary length. 

We first describe a modification that can be performed on every 

2xa-determinantal singularity. I call it the 

"Tjurina-modification" because to my knowledge it first 

(implicitly) appeared in [Tj] (in any case it sounds good). 

Let$ and ~ be free <D = <D~a+l - modules of rank a and 2 

respectively. Consider a map $ i ~. This gives.rise to a 

map A
2
$@ A

2~* ---+ o with as cokernel the structure sheaf of 

the space X defined by the 2x2-minors of [i]. When we transpose 
* * the map i we get a ~ --- $ and tensoring wi th <Dx we get an 
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exact seguence 

0 * ~®(!'.)X 

where ~Xis a certain torsion free module on X. When Xis 

determinantal, ~Xis of rank 1. Going to the associated spaces, 
.lll .lll 1 

we get rP(~x> c l.t"x = lt" x x , (rP = rP(:g/m-~)). 

At a generic point of X the map rP(~x> ---+ Xis 1:1. The 

closure of these components in ~i we call X and the resulting map 

X --- X we call the 11 Tjurina-modification11
• The space 

.lll * 1 
lt" = rP((~/'ffi-~) ) c rP(~x> we call the II central rP II of the 

modification. Note that there is a confusing natural isomorphism 
rPl ___ ~1. 

(1.3.11) Example Let [;;] = [ ] 
What we described as rP(~x> is a pedantic way of talking about the 

system of eguations s.fi = t.gi, i=l, ... ,n; (s:t) e ~ 1 . 

Take for instance: 

[ Yo Y1 . . . Yn-2 Yn-1 ] [ i] = 
Y1 Y2 . . . Yn-1 x.yo 

Then we get s.yo = t.yl s.y 1 n- = t.x.yo 

s.yl = t.y2 

i=0,1, ... ,n-2 

- i On the chart t f O we can write yi - s .y0 i=O,l, ... ,n-1 and 

so (s - x).y0 = 0. Hence rP(~x> has two components: 

1) y. = 0 ~ ~ 1
x r. 

l. 

2) A smooth component X mapping to X(n) as the normalization. 

When we take the full matrix M we get k smooth components instead 
,r 

of one. They intersect ~ 1 , the fibre over O of the 

Tjurina-modification, in the points gi corresponding to the pi of 

(1.3.10) under the na~ural isomorphism rr 1 
---+ ~

1 . 
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Cl.3.12) Theorem Let X be a partition singularity of type 
1T 

,r = (a(l),a(2), ... ,a(k)). For every choice 

of points q. e ~l, and numbers N. ~ 0, i = 1,2, ... ,k, there is a 
1 1 k 

flat deformation F: X __ ....., ~ of X such that the general 
1T 

fibre F- 1 (~) has a single isolated singular point with a 

resolution graph of the followin9 form: 
-~------ - ---- - - - --- - -- - ---- -- - - --- - - -- -- -- ----··-·-------·-··--·------

ol.(i.) 
__ _,.A--"'-.. 

r ' 
• • 

The central ~l has self-intersection - a and the points qi can be 

identified with the intersection points of this ~l with the k 
other ~l, s. 

Proof Determine numbers Ei and ri by the relations 

Ni= a(i).ri - Ei O ~Ei~ a(i)-1. 

Choose matrices Ai e Aut(~ 1 ) such that the points pi= Ai. ( 6) 
correspond to the points q .. 

1 

Define the following matrices: 

M (Y,l,e,r) n - = 

= 

[ 
[ 

Yo Y1 
Y1 Y2 

Yo ] r Lx 

(i) 
M

1
• = A . • M ( . ) ( Y , >.. . , E • , r . ) , 

1 a 1 - 1 1 1 

Ye + l.xr Yn-2 Yn-1 ] Yn-1 x.yo 

i=l,2, ... ,k. 
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Let X:= { (~,~ ) e ~a+lx ~k I rank ( M(~ 1 ~) ) ~ 1} and 

F: X ----+ ~k the evident projection map. 

Let~ --- X be the Tjurina modification. Around the point gi 

we have to analyse the system of eguations, coming from the matrix 

Mi. So let us first study the modification for the matrix 

[ 
r y + X.x 

E 

This leads to the system of eguations: 

s.yo = t.yl 

s.yl = t.y2 

s. ( y r 
t.ye+l + Lx) = E 

s.yn-1 = t.x.yo 

] 

i In the chart t = 1 we have yi = s .y0 , i = 0,1, ... ,E , and from 

this s.( s.y0 + X.x) = x.y0 . When we introduce a new coordinate 
- n - n-e n - r x = s - x, this can be written as x.y0 + X.s .(s - x) = 0, 

- +' n(r+l)-e - (- ) 0 f t. W"th or x.y0 A.S + x.g x,s = , or a cer ain g. i 

Y = Yo + g(x,s) we get x.y + X.sn(r+l)-E = O 

Hence we see that the Tjurina modification belonging to the above 

matrix has an Am- singularity at (l:O}xQxX for). # 0 and 

m=n(r+l)-e-1. When we resolve this A - singulariy we introduce a 
m 

chain of m ~ 1 •s. But then we still have to determine where the 

strict transform of the central ~l intersects this chain. It is 

easy to verify that the curve t ----+ (ta, tm+l-a, t} on the 
m+l germ x.y = z , a = 1,2, ... ,m has a strict transform cutting the 

a-th curve of the chain of ~ 1 •s on the minimal resolution. In the 

coordinates x,y0 ,s the curve corresponding to the central ~l is 

given by t --- (0,0,t} . Performing the coordinate changes it 
- - _ n n.r-t becomes the curve t --- (x,y,s}-(t ,t ,t). So the central 

~l intersects precisely n-th curve of the chain and- so the 

resolution looks like: 
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-----------------
--------· 

• • • 
.,/ 

-n y-
n~r - E. 

The point that needs some clarification is the fact that 

the self-intersection of the central ~l is really -n. This can be 

checked directly, by looking at the multiplicities of the function 

X of (1.3.4) on all exceptional divisors. 

The theorem follows from this, because around each point qi we 

have essentially a situation as in the above computation.(Only the 

cases in which 'l' appears in the partition ~ are slightly 

different.) • 

(1.3.13) Remark: The isolated singularities that appear in 

the generic fibre of the family in (1.3.12) 

are certain special rational determinantal singularities. 

The special case corresponding to ~ = (1,1, ... ,1) gives rise to 

the ones with reduced fundamental cycle (see § 3.4) and can be 

found in [Wah 1]. 

The cases corresponding to ~ = (1,1,1), (2,1), (3) were given by 

Tjurina in [Tj] and give rise to certain rational triple points 

( see ( 4. 1. 24)) . 
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§ 1.4 Improvements 

The notion of improvement was introduced by N.Shepherd Barron in 

[Sh], as a tool for the study of a certain class of non-isolated 

surface singularities (the degenerate cusps, see also§ 4.3). The 

idea is as follows: Normal surface singularities (X,p) are usually 

studied using a resolution Y 'IT X. Due to the fact that 

'IT*VY = vX, all information about Xis contained in the space Y. 

However, when we resolve a non-isolated surface singularity 

(X,t,p), we can not have 'IT*VY = vX, because the resolving map 

changes the space X in codimension 1. In particular we lose 

information about the singular locus t when we only look at the 

space Y. To remedy this, we do not resolve X, but only allow 

modifications in codimension two, and look for the best possible 

space Y we can get that way. Such a space Y is allowed to have 

certain very special singularities and will be called an 

improvement of X. 

(1.4.1) Resolutions. 

We recall some facts about resolutions. 

Definition: Let X be a generically reduced space. 

A space Y together with a map Y 'IT X is 

called a resolution of X if and only if the following conditions 

hold: 

1) 'IT is a proper map. 

2) Y - 'IT- 1 (t) --- X - t is an isomorphism.(here t is the 

singular locus of X and 'IT- 1 (t) is required tobe nowhere 

dense in Y). 

3) Y is smooth. 

(A shorter way to formulate 2) is to say that 'IT is bimeromorphic.) 

We refer to 'IT as the resolving map or contraction map and to Y as 

the resolving space or even the resolution. Condition 2) means 

that we modify our space X only inside t to obtain a smooth model 
-1 for X. We call the set 'IT (t) the exceptional set of 'IT (or 

sometimes of Y, if no confusion can arise). 

It is a theorem of Hironaka that every space has a resolution 

( [Hi] ) . 
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For surfaces there are several ways to construct resolutions. 
N 

First normalize X to get a surface X with isolated singularities. 

Blowing up these points gives a space x1 which might be non

normal. Repeating normalization and blowing up points lead in a 

finite number of steps to a space which is smooth and hence 

results in a resolution of X. This a theorem of Zariski (see 

[Za 1]}. Another way to obtain a resolution of a surface is by 

first projecting X generically to a plane H. The map X __ ___,. H 

branches over a curve B c H. By repeated blowing up points the 

branch curve is transformed into anormal crossing divisor Bin 

the blown up plane H. Pulling back X we get a space X __ _,. H, 
whose normalization has only cyclic quotient singularities above 

the intersection points of B, and the resolution of these 

singularities is easy.(Hirzebruch-Jung method, see [B-P-V], 

[Lau 1]). We refer to [Za 2] and [Ab] for general information about 

the history of the resolution process. 

We now take a closer look at the resolution Y X of 
-1 normal surface germ (X,p). The exceptional divisor E := ~ (p) is 

a compact curve and is the 'maximal' compact subset of Y. 

There exists a unigue minimal resolution Y0 ---. X such that 

every other resolution factorizes over this one. lt is 

characterized by the property that Y0 does not contain 

exceptional curve of the first kind, that is, a smooth 

self-intersection -1.(see [Lau 1]). A resolution Y 

any 

~l with 

Xis 

called a good resolution if the curve Eisa normal crossing 

divisor on Y, and all irreducible components E. of E are smooth. 
1 

Again there is a minimal good resolution with the property that it 

is dominated by all good resolutions. This minimal good resolution 

is obtained by starting with the minimal resolution and then 

resolving E embeddedly in Y in the minimal way to anormal 

crossing divisor. For such a good resolution it is customary to 

encode the discrete data of the resolution into the resolution 

graph. lt is a graph with one vertex for each irreducible 

component E. and one edge between two vertices for every point of 
1 

intersection. Each vertex has two numbers attached to it: 

1) 

2) 

g(E. ), 
1 

E~ 
1 

the genus of the curve Ei . 

the self-intersection number of Ei . 
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Usually genus O and self-intersection -2 are suppressed from the 

notation. 

example: The simple surface singularities 

An (n~l), Dn (n~4), En (n=6,7,8) have as resolution 

graph (of the minimal= minimal good resolution) just the Dynkin 

diagram of their name (see [Sl]). 

(1.4.2) Improvements. 

We propose the following general definition of an improvement, as 

it arose from discussions with J. Stevens. 

Definition: Let X be a generically reduced space. 

A space Y together with a map Y n Xis 

called an improvement if and only if the following conditions 

hold: 

1) 

2) 

3) 

4) 

( I, A 

n is a proper map. 

There exists M c I 

Y - n- 1 (M) 

:= Sing(X) ,with codim M ~ 2 such that 

X - M is an isomorphism (and n- 1 (M) is 

Y). nowhere dense in 

A := Sing(Y) is smooth of codimension 1 (or empty) and equal 

to the strict transform of I under n. 

Let Y n y be the normalization 
N 

= n- 1 (A). map and put A 

Then y and A are smooth and Y is CM. 
N 

and A are understood with their reduced structure. ) 

The idea is to modify X only in codimension 2 and ask for the best 

possible properties for Y. Note that when codim(I) ~ 2 we can take 

M = I and recover the ordinary notion of resolution. 

In general however, it is totally unclear under what 

conditions improvements in the above sense exist (c.f.(2.5.12)). 

Probably it is better to weaken 3) and 4) by allowing certain mild 
N 

singularities on A and A when dim(X) ~ 3. As we are interested 

primarily in surfaces, we will not discuss the general problem, 

although the 3-dimensional case is of importance for the 

deformation theory of surfaces over a curve. 
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(1.4.3) Proposition: Let (X,I,p) be an AWN-surface germ. 

Then there exists an improvement Y 1T X 

The space Y has only partition singularities. 

proof 

STEP 1: 

STEP 2: 

We construct an improvement for X in 5 steps. Remember 

that by convention dim(I) = 1. 

n N -1 
X and put I = n (I). The Normalize X and get X 

induced map I I is a finite covering, branched 

above p e I c X. 

Take an embedded resolution Y p X of the curve I 
N 

in X. Let A be the strict transform of Ion Y: 

A = p-l( I - n-l(p)) 

We may assume that Ais transverse to the exceptional set 

E = P-l(n-l(p)). 

STEP 3: We have a composed map A __ _,. I __ _,. t , which 

finite. As Ais smooth, this map factorizes over the 

normalization mapping A I of I, and we have a diagram: 

A 

1 
n I 

STEP 4: We have maps A A and A Y. By (1.2.6) 
N 

we can form the space Y , obtained from Y by glueing A 

to A. We obtain a push-out diagram as in (1.2.2): 

A y 

l J l 
A y 
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STEP 5: By the universal property of the push-out (1.2.2) 

we get the dotted arrow 

space Y together with a 

A 

l 
A 

J 

~ 
I 

y 

map y 

y 

l~ 
y X .. . l -~ 

X 

x. So we have constructed a 

X. 

CLAIM y ,r 
Xis an improvement (in the sense of (1.4.2)) 

Conditions 1), 3) and 4) are satisfied by construction. 

Also, by construction Y has only partition singularities. 

It is clear that Y - ir-
1 (p) ---+ X - {p} is an analytic 

homeomorphism. As we supposed X - {p} tobe weakly normal, it 

follows that it is an isomorphism. Hence condition 2) and so 
y ,r 

Xis an improvement. 

A surface. like the improvement Y, which 

only contains partition singularities 

will be called weakly smooth 

(1.4.4) Definition 

Cl.4.5) Remark lt is possible to construct an improvement 

for a general, not necessarily almost weakly 

normal surface (X,I,p) (J. Stevens [Stev 2]). This can be done as 
N 

follows: put on I and I the conductor structure, as in (1.2.11). 

One can define a non-reduced strict transform A for an embedded 
N N 

resolution Y 
N 

X of the curve Ired and then form the 
push-out on A Y and A ----+ I, giving a space Z 

mapping generically isomorphic to X. Taking the 

Cohen-Macaulification c: Y --- Z of Z then gives an 
,r 

improvement Y ---+ X. However, it is not known in general 

• 

what kind of singularities one has to allow on Y. In the case that 

X has transverse to its singular locus a simple singularity a list 

of normal form can be given (see [Stev 2]). 
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(I.4.6) Remark In the case where X has transversally an A -1 
singularity J. Kollar has constructed an 

embedded improvement by blowing up points and smooth curves. The 

main point is that in the ordinary resolution process one has to 

blow up along centers with highest multiplicity. Because along the 

double curve one has multiplicity 2, one first reaches a stage in 

which one has multiplicity at most 2 everywhere. So one can reduce 

to a hypersurface situation, which turns out tobe analysable. 

This method does not seem to work for the other transversal types, 

but it generalizes to higher dimension.(see [K-S]). 

(I.4.7) Notation From now on we will stick to following 

notational convention: 

A y y A A A 

! 
l: 

! ~1 l l l 
X n X l: l: l: 

Here X is a germ (X,l:,p) with X-{p} weakly normal; 

X is the normalization of X; 

y is a resolution of X, as in the proof of ( 1. 4. 3); 
y 

l: 

l: 

A 

A 

E 
N 

E 

s 
N 

s 

is an improvement of X; 

is the singular locus Sing(X) of X; 

is the inverse image n- 1
(1:) of l: in X; 

is the normalization of l:; 

is the normalization of l:; 

is the exceptional set ~-l(p) of y 
N 

is the exceptional set of Y --- X; 

is the set An E of special points on Y; 

is the set An E of special points on Y; 

X; 

Most of the time we suppress the names of the maps between 

spaces, as there is only one sensible map. We also give the 
N 

name to similar maps between different spaces, like Y n 

The notational advantage is clear. 

these 

same 

Y. 

(1.4.8) Lemma : Let X be a (pure, generically reduced) surface 

and let Y 

there exists an exact sequence: 

~ 
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0 0 

So in particular <Ox ~ -rr*<OY iff X is CM. 

Proof Because Y is assumed tobe CM one can show that 
ff 

-rr*<OY ~ i*i <Ox ,where i:X - {p} Xis the 

inclusion map. 

As already mentioned, a curve C on Y is called an exceptional 

curve of the first kind if and only if Cis a smooth rational 

curve with self-intersection -1. Such a curve can be blown down 

without affecting the smoothness of the space Y. However, due to 

the presence of the curve 6, not all these exceptional curves of 

the first kind can be blown down on an improvement without 

affecting its weak smoothness. 

(1.4.9) Example Take the singularity of example (1.1.16). 

It has an improvement that consists of two 

smooth pieces. One piece is c 2 blown up in one point, the other 

piece is isomorphic to c 2 . This second piece is glued to the 

first along a curve that is tangent to the exceptional curve of 
·-----~·--------------

the first piece : 

Here the (-1)-curve cannot be blown down without affecting the 

weak smoothness of the space Y. 

(1.4.10) Definition: A curve C on Y is said tobe a curve of 

type k if and only if it is an 
N 

exceptional curve of the first kind and 6.C = k. 

• 

An improvement Y 'IT X such that Y does not contain curves of 

type O we call weakly minimal. 

11.e;. 



Cl.4.11) Proposition Let X be an AWN surface germ. Then 

there exists an improvement 

with the property that every 

improvement of X factorizes over Y0 . Y0 is characterized by the 

property that Y
0 

does not contain any curves of type O or 1. 

This improvement is called the minimal improvement. 

Proof: ~et Y
1 

__ _,, X be an arbitrary improvement of X. When 

Y1 contains of type NO, it can be blown down on Y1 to 

give another improvement. If Y
1 

contains a curve C of type 1, so 

c2 = -1, c ~ ~1 , c.~ = 1, then when we blow down C on Y1 we still 

have that image of Ais smooth, so by the push-out construction we 

again find an improvement, dominated by Y1 .Nrn a finite number of 

steps we reach an improvement Y0 such that Y0 does not contain 

curves o! type O orNl. Let Y2 __ ..,.. X be another improvement, 

and let Z --- X be the minimal resolution of X. Soboth 
N :o --- X and : 2 --- X factorize over Z __ _., X. Let 

Y0 P Z and Y2 q Z be the resulting maps. Now the 

first map can be considered as the minimal embedded resolution of 

the curve p(A
0

) c Z and the second as another embedde~ resolution 

of the same curve. Hence we obtain a map Y2 --- Y0 , mapping 
A

2 
to A

0
, so we obtain a map Y2 __ _., Y0 In other words, Y0 has 

the property of the minimal improvement. • 

We also need good improvements. 

(1.4.12) Definition ~ 
An improvement Y --- Xis called a 

good improvement if and only if the 

following holds: 

1) 

2) 

3) 

Eisa normal crossing divisor. 

the E. are smooth. 
1 

A intersects the Ei transversally. 

Similarly one has: 

(1.4.13) Proposition 

X 

Let X be an AWN surface germ. Then 

there exists an improvement 

with the property that every good 

improvement of X factorizes over Y1 . Y1 is characterized by the 
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N N N 

property that Ei.(tilj Ej + A} ~ 3 for every curve Ei of 

type O or l.(Minimal good improvement.) 

Proof: 

(1.4.14) 

Similar to the proof of (1.4.12) 

Remark In Chapter 3 we will need even better than 

good improvements, called stable models. 

Fora good improvement we introduce the improvement graph in 

the same way as we did for a good resolution, but we have to take 

special care of the partition singularities. We propose the 

following symbol to denote the occurence of X on an improvement: 
'II' 

(1.4.15) Symbol : . 

TI 

As has been mentioned in (l.3.2), X'II', 'II'= (a(l),a(2), ... ,a(k)) 

consists of k irreducible components and on every component there 

is a distinguished (class of a) line L., transverse to its 
J. 

singular line. So the symbol of X is connected to k vertices in 'II' 
the improvement graph. 

(1.4.16) Example: Take again the example of (1.4.9) The 

(minimal) good improvement looks like: 

.J 

The improvement graph is: 

-t 

-1 1 i------ 1 

-3 

""' 

• 



As the 

one of 

can be 

second component does not contain any exceptional curve, 

the arms of (@ is not connected to anything, so this 

suppressed from the symbol: 

-2 

1 1 ------ -1 

-3 

Another way to avoid this annoying phenomenon, is to blow up once 

in the second component. 

Then the improvement graph looks like: 
-----{ 

_, 
1 1 

.,__ _____ , 
-3 

We extend our graph conventions by using the symbol o f or a 

smooth rational curve with self-intersection -1.( • means a 

smooth rational (-2)-curve, as usual). The (-1)-curves in this 

example are of type l." Such curves behave in many respects as 

(-2)-curves. For example, when we blow up a number of times in 

the special point, the graph takes the following shape: 

• • • 0 0 0 • 

In Chapter 3 we will study these transformations more 

systematically. We call them elementary transformations. 

4q 
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CHAPTER 2 

THE GEOMETRIC GENUS 

In this chapter we introduce an important invariant of a weakly 

normal surface germ (X,I,p): the geometric genus Pg. This 

invariant has many properties in common with the invariant of the 

same name for normal surface singularities, most notably the 

semicontinuity under flat deformations and its interpretation as 

a Hodge number of the vanishing cohomology of a smoothing. These 

facts express the fact that p should be thought of as a certain g 
'defect'. The semicontinuity property is very useful for 

classification: it makes p into a good measure of the complexity g 
of the singularity. 

§ 2.1 The Delta-invariant and the Geometrie Genus 

The genus of smooth, complete and irreducible curve Cis the 

number g(C) := dim H1 (@c> = dim H0 (wc>· Here wc is the sheaf of 

regular differentials on C, and by Serre duality both dimensions 

above agree (wc is dualizing). Classically curves were studied by 

a plane model D c ~
2 , obtained for instance by a projection 

n C __ _, D. Such a plane model usually has singularities. The 

question that arises here is: how can we describe the space of 

holomorphic 1-forms HO(wc) in terms of the plane model D c ~ 2
? 

When we choose affine coordinates x,y such that the equation for D 

can be written as f(x,y) = 0, this question can be reformulated 

as: What rational differentials w = R(x,y).dx are "everywhere 

finite on C" ? Such a differential is called of the first kind. 

lt turns out that such a differential has tobe of the form: 

(2.1.1) 

w = 
~(x,y).dx 

(af/ay) 

where ~ is a polynomial with deg(~) ~ deg(f) - 3. 
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In addition, for a differential w tobe of the first kind it is 

(per definitionem) necessary and sufficient that ~ is an adjoint 

of the curve D, or that ~ satisfies the adjunction conditions, 

which force ~ to vanish to sufficient high order on the singular 

points of D. For example, when D has only ordinary nodes and cusps 

as singular points, the adjoints are those curves which pass 

through all singular points.(For this classical theory see [C-G], 

[B-K].) Define the adjunction ideal (sheaf) by: 

n*[ ~ e <DIP2 1 

~ . dx 

(af/ax) 

n Here the map C __ _. D can be considered as the normalization 

of D. A completely satisfactory description of this adjunction 

ideal was given only comparatively recent ([Go]) and is 

formulated most naturally in terms of local duality. 

First, the differentials of (2.1.1) are considered as global 

sections of an invertible sheaf w0 , the dualizing sheaf of the 

curve D. So w0 is obtained by taking residues of forms on 1P2 . 

Then 3 can be described as 3 = Ann (w0 /n*wc>· Now one has the 

following miraculous: 

(2.1.2) Duality isomorphism 

(see [R-R-V], [Ha 11, see also (2.2.2)) 

As w0 is locally free one has 9'eem.(n,,.<Dc , w0 ) ::::::: 9'e'em.(n,,.<D0 ,<De) ® w0 
and 9'eem.(n"'<Dc , <00 ) = Ann(n*<Dc/<D0 ) is just the conductor ideal of 

the map C n D (see (1.2.11)). We conclude that the 

adjunction ideal is the same as the conductor ideal. 

(The duality isomorphism can be reformulated as the statement that 

for every singular point p of D the local residue pairing 

RP :(w0 /n*wC)p x (n*<Dc/<D0 )P 

[w] , [g] 

is non-degenerate (see [Se]). Hence w0 /n*wC and n,,.<Dc/<Dn have the 

same annihilator). 

52 



From this we see that the number of adjunction conditions imposed 

by a singular point p e Dis just the 6 -invariant 6(D,p) (1.2.23). 

Using the exact sequence 

0 <D/(f 0 

and the isomorphism w0 ~ <0 0 (d-3), d = deg(D) one gets 

(2.1.3) Genus formula: 

g(C) = (d-l).(d-2)/2 - 6(D) 

The adjunction conditions on curves of degree d-3 at the different 

points are independent. 

Of course, there are more easy ways to prove (2.1.3), but most 

other proofs use some kind of deformation argument. For instance, 

one can deform Dto a smooth curve by perturbing the defining 

eguation for D. This leads to the following situation: 

(2.1.4) Situation: D 

l 
{ 0} s 

Here ~ is the surface {((x:y:z),t) e ~
2

x SI F(x,y,z,t) = O}, 

F(x,y,z,O) the projective eguation for D and Sa smooth curve 

germ, parametrized by t. Il is the evident projection map. Put 

Dt = n- 1 (t) and assume this tobe a smooth curve for t~O. 

By the standard "semicontinuity theorem" (see [Ha 2]) one has: 

Using o ---+ <00 
definition x(<Dc) = 1 - g(C) 

n"'<DC 
one arrives 

<C 6 ( D..._) _ ___,. 0 and the 

at g(C) = g(Dt) + 6(D). 

When one nows that the genus of a smooth plane curve of degree d 

is (d-1).(d-2)/2 this is eguivalent with (2.1.3). 

In any case the 6-invariant, originally defined as a purely local 

invariant of a curve singularity, appears to govern the behaviour 

of the genus of a curve in a family. 



The genus of a srnooth complete curve C has a clear topological 

meaning as g(C) = (1/2) dim H1 (C,Z). This suggests comparing 
H1 (D,Z) with H1 (C,Z) and H1 (Dt 1 Z) in the above situation (2.1.4). 

One can choose a contraction p : Dt ----. D of the 'nearby 
fibre Dt' to the singular fibre D. This leads to exact sequences: 

(see [Stee 1]) 

(2.1.5) 

0 

(2.1.6) 

0 

(where r(p) is the number of branches of D at p) 

Here H1 (R~) is the vanishing cohomoly group of the family 

D ----. S, that is, the first cohornology of the local 
Milnor fibre (see [Mi], [Lo]). Each singular point p of D 
contributes µ(D,p), the Milnornumber, to H1 (R~). 

0 

0 

Now the sequences (2.1.5) and (2.1.6) are sequences of Mixed Hodge 

Structures (MHS) (see [Stee 1]): the MHS on H1 (D) appears in (2.1.6) 

as an extension of two pure ones; the MHS on H1 (Dt) is the limes 

Mixed Hodge Structure as constructed in [Stee 1]. The MHS 
on H1 (R~) is defined by the sequence (2.1.5), but is of local 

nature, i.e. depends only on the local structure of ~ around the 

singu~ar-_points. One can compu_t_e_t_h_a_t __ : _________ _ 

GriH1 (R~) = 6 ; Gr~H1 (R~) = 6 - r + 1 

and taking Gr~ of the sequences (2.1.5) and (2.1.6) one refinds 

formula (2.1.3). So this approach gives us a totally different 

interpretation of the 6-invariant as the holomorphic part of the 

vanishing cohomology. 

Let us prove that 6 is a semicontinuous invariant. By this we 
mean the following: consider a flat deformation ~ __ _,. S of 

a reduced curve germ (D,p) with an isolated singular point p over 
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a smooth curve germ (S,O). So the general fibre Dt, t#O now may 

have several isolated singular points, each with their own 

6-invariant. By semicontinuity of 6 we mean that: 

6(D) ~ 6(Dt) := ~ q e 6(D q) 
~ Dt t' 

(2.1.7) Proposition 6 is a semicontinuous invariant. 

proof : Let D ~ be a flat deformation of the germ 

l l 
{O} s 

Dover a smooth curve germ S. So the total space is a certain 

surface ~, in general with a one-dimensional singular locus ! 

Because we supposed Dto be reduced, ! maps finite to S. 

Consider the normalization ~ n ~, and put 5 = n- 1 (D). 

One has the following diagram with exact rows and columns: 

0 0~ 
t 

0~ o- 0 D 

r r r 
0 o~ t o~ o- 0 

~ ~ D 

! t t 1 
0 ~ ~ 05/0D 0 

Multiplication by t, the local parameter on S, is injective on o; 
and O~ because we have a flat deformation. Injectivity of the map 

o 0 __ __, 05 follows from the fact that D was assumed tobe 

reduced. So by the snake, t acts injectively on the sheaf ~ also. 

Taking the direct image, we may consider ~ as a locally free sheaf 

on S. On the general point of S it has rank 6(Dt) and the fibre 

over O has dimension dim(o5/00 ). As the curves D and Ö have the 

same normalization this dimension is also 6(D) - 6(D). Hence we 

arrive at: 

6(D) = 6(0) + 6(Dt) 

As 6(0) ~ 0 we get the semicontinuity of 6 (and even more for 
~ 

example: 6 constant • ~ smooth ). • 
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(2.1.8) Remark 

this is somewhat 

theorem of § 2.5. 

This proposition is due to Teissier 

(see [Te]). We include a proof here, 

like a model for the semicontinuity 

because 

One can define the 6-invariant for a curve 

germ D that is generically reduced, but is 

allowed to have nilpotents as: 

(2.1.9) Remark 

6(D) = 6(Dred) - Torsion (v0 ) 

(see [Stee 5]) A slight change in the proof of (2.1.7) shows that 

this invariant is also semicontinuous. One can use the following 

simple lemma: 

Let$...!.....~ be a map between two locally free 

sheaves on a smooth curve S with local 

parameter t. Assume that the induced map 

(2.1.10) Lemma 

"'s: $ / ( t- s) . $ ----+ ~ / ( t- s) . ~ 

has an index for s = 0. Then tJ, has an index (for s small) and 
s 

Index(ip
0

) = Index(tJ,s) 

(2.1.11) Having discussed the case of curves at some length, we 

turn our attention to ... surfaces. 

Let Y be a smooth projective surface, and Y 

birational mapping from Y to X. The map Y 1T 

1T X c: 1? 3 a 

X can be 

considered as a resolution of the singularities of X. In general, 

the singular locus of X will be a space curve I, singular itself. 

The geometric genus of Y is the number Pg := dim a 0 (wy) = dim H2 (vy) 
Clebsch and Noether ([Cl],[No]) started to study the double 

integrals of the first kind on X, i.e. expressions of the form: 

ff w, with w a differential of the first kind, which again turns 

out to have the form: 
lf, .dx.dy 

w = 
( af/az) 

where f(x,y,z) = 0 is an affine equation of X, and lf, is an adjoint 

polynomial, now with deg(lf,) ~ deg(f) - 4. The adjunction 

conditions require lf, to vanish to sufficient order on I. But in 
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constrast to the curve case, there does not exist a direct 

algebraic description of the adjunction ideal 

"' ir*( 1$ .dx.dy ] /J = { 1$ e uX I e Wy } = Ann<D (wx/ir*wY) 
(af/az) X 

(so far as I know at least). 

The .classical approach i s to spli t up the adjunction problem in 

two parts. One defines 1$ tobe a subadjoint of X if 1$IH is an 

adjoint of the general hyperplane section X n H. The corresponding 

subadjunction ideal /J is easily seen tobe the annihilator of 
N s 

wx/n*wX, where X n Xis the normalisation of X. Using the 

duality isomorphism for finite maps (2.1.2), this is equal to 

Ann(n*<Dx/<Dx), the conductor. ThisNreduces the problem to the case 

of the isolated singularities of X (which now however need not be 

hypersurface or even Gorenstein singularities). But when Xis 

obtained from Y by a general projection, X has only "ordinary 

pinch points (D ) 11 and 11 ordinary triple points (T ) 11 
( see 

00 00,00,00 

[G-H], Ch.4) as singularities. Hence, in that case the 
N 

normalization Xis smooth and the adjunction ideal is the same as 

the subadjunction ideal. But as isolated singularities naturally 

appear in degeneration situations, we cannot be satisfied with 

only this knowledge. 

Let us look at the role played by the isolated singular points. 

Each such a point p e X imposes 

adjunction conditions (which, however, are not independent on 

polynomials of degree d - 4 in general). 

This number p (X,p) is called the geometric genus of the isolated g 
singular point p. 

Du Val [DuV] was the first who determined which singular points of 

surfaces in ~ 3 do not affect the adjunction conditions, i.e. those 

with p = 0. These rational double points (RDP's) as they are 
g 

called now, were described much earlier by Klein [Kl] as quotients 

of ~ 2 by a finite subgroup G c S1(2,~) and the classification of 

these subgroups goes back to Schwartz [Schw]). 

The list of RDP's coincides with the list of simple map germs 

f:~ 3 ___ ~ as was discovered by Arnol'd ([Arn 1], [A-G-V]) 
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(and this is still a miracle). For several reasons these 

singularities carry the names of the Dynkindiagrams of type 

An (n~l), Dn (n~4), En (n=6,7,8). We refer to [Dur] for an 

overview of the different characterizations of this remarkable 

family of singularities. 

The geometric genus Pg can be computed with the help of the 

Newton diagram (see [M-T]) of f, as was discovered by Hodge (see 

[Hod]). In fact, Baker (see [Ba]) computed the 6-invariant for 

plane curves the same way already in 1894. When f is degenerate 

with respect to its Newton diagram there is still a description in 

terms of the V"-filtration of the Asymptotic Mixed Hodge Structure 

(see [S-S]). 

The invariant pg is, as the 6-invariant of a curve 

singularity, semicontinuous under flat deformations. The proof of 

this fact contains a new element: the Vanishing Theorem of Grauert 

and Riemenschneider (see [G-Ri]). We will discuss this in the 

next section. 



§ 2.2 Genus and Defect 

In this paragraph, we give some general facts and results that are 

related to the geometric genus of a singularity. (This account is 

mainly based on [El].) It will be notationally convenient to work 

in a suitable derived category, like D~(X) of bounded complexes of 

sheaves with coherent cohomology sheaves. 
i By K we denote the i-th cohomology sheaf of a complex K". 

(2.2.1) Definition Let 1r : Y --- X be a proper map 

between two (analytic) spaces X and Y. 

We call the complex 

:P • ( 1r) = Cone ( <Ox 

the defect (complex) of the map 1r. 
i A complex K" is called concentrated at p if supp(K) c {p}. A map 

,ras above is called concentrated if its defect is. For example, 

all point modifications, in particular all resolutions of isolated 

singularities are concentrated maps. In two cases it is possible 

in a straightforward way to define the Euler characteristic of a 

complex: a) when Xis compact or b) when the complex is 

concentrated. (In both cases: x(K") = E (-l)i[Hi(X,K"), where [His 

hypercohomology.) We put x(1r) = X(:f"(,r)). 

Note the following obvious properties: 

1) 
2) 

X(<Oy) = X(<OX) + X(1r). 

Fora composition Z 

R" f*:P. (g) = Cone(:P" (f) 

g y f X one has: 

:J>" (f„g)). 

3) In particular for the composition of concentrated maps: 

X(f„g) = X(f) + X(g). 

Now consider a resolution Y ,r X of the singularities of X. 

The crucial property of the defect :f"(,r) is that in fact it does 

not depend on the resolution chosen. Let us see why this is the 

case. 

Remember that for every space there is a dualizing complex wX 

naturally attached to it (When Xis of dimension n, then one has 

w~ = 0, i ~ [-n,0]; if Xis CM, then w~ = 0, i# -n, wX := win; if 

Xis smooth, then wX ~ Q~, the top differentials.)(see [R-R]). 
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Part of duality theory can be summarized in: 

(2.2.2) Duality isomorphism: For every proper map Y 1f 

there is a natural isomorphism: 

R. ,r *R. 9e'em(!'.'.) ( $ . , Wy) 
y 

Fora proof, see [R-R-V]. 

When we take 31·= wy, we get a ("fibre integration") map: 

We call the complex Q·(,r) = Cone(R·ir*wY --- wX) the codefect 

of the map 1r. Using (2.2.2) it is easy to verify that: 

:P. ( ,r) = R. 9eemv ( Q.. ( ,r), wX) 
X 

Q.. (,r) = R·ueemv (:P" (,r), wX) 
X 

Because every two resolutions are dominated by a third one and 

because of the composition property of the defect, it is 

sufficient to show :P·(,r) = 0 for a bimeromorphic map between two 

smooth spaces to conclude independence of the resolution. Dually, 

it is sufficient to show Q·(,r) for such a map. For this one can 

use: 

(2.2.3) Vanishing theorem of Grauert and Riemenschneider: 

Let Y 1f X be a proper bimeromorphic map between 

two analytic spaces. Assume that Y is smooth. Then one has: 

i 
R 1r*wY = 0 for all i > 0 

Fora proof see [G-R]. 

From this the independence follows: if Xis smooth, then 

wX[-n] = WX = Q~. The inclusion ,r*Q~ --- Q~ is in fact an 

isomorphism, because regular differentials can be pulled back. So 

we see Q·(ir) = 0. 

Now we know that :P 0 (1r) does not depend on the resolution ,r the 

following definitions make sense: 
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(2.2.4) Definitions: Let Y 'IT X be a resolution of an 

n-dimensional space X. 

1) the complex ~-(X) := ~·(,r) we call the genus of X. 

(Similarly there is a cogenus Q"(X) = Q"(,r).) 

2) Xis said tobe rational at the point p if 

~- (X,p) := ~- (X)p = 0. 

3) If X has an isolated singular point at p, its geometric genus 
n+l is the number Pg(X,p) = (-1) .x(~(X,p)). 

(2.2.5) Remarks: 

1) It is easy to see that Xis rational at p if and only if it 

is normal, ~ohen-Macaulay and does not effect the adjunction 

conditions, i.e: ,r*wY ~ wX (all at p). 

2) It is probably too late to change the name geometric genus 

into the better name arithmetic genus. The reason for the 

sign will be clear in a moment. 

3) For an isolated purely n-dimensional singularity one has: 

~i(X,p) i+ 1 i -1, o, n-2. = se{pl <vx> = I • I 

~n-1 (X, p) n-1 
(/<r>x if 1) = R 'IT *<r>Y n = 

~j (X,p) = 0 I j ~ n. 

4) When Xis a generically reduced one-dimensional singularity, 

then Pg is just the 6-invariant of (1.2.23) and (2.1.9). 

5) When we choose a small Stein representative for an isolated 

singularity of dimension n ~ 2 we have: 

n-1 * 0 0 (R 'IT*Vy) = H (wy_E)/H (wy), where Eis the exceptional set of 

the map Y 'IT X. So if Xis CM the number p (X,p) is the g 
dimension of the vector space of n-forms on Y-E that cannot be 

extended to holomorphic ones on the whole of Y. 

We now state two theorems that might illustrate the relevance of 

the geometric genus: 
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(2.2.6) Theorem ([EI]) The invariant p is upper semig 
continuous under flat deformations. 

I.e: given a flat deformation X 

isolated singular point p we have: 

f Sofa space X with an 

Fora proof see [El] .(There the result is only stated for normal 

X.) The main ingredient of the proof is the Grauert -

Riemenschneider vanishing theorem (2.2.3) which makes it possible 

to do roughly the same with wX as with ox in (2.1.7). We use this 

idea in§ 2.5. Elkik in fact proves the semicontinuity of all 

partial Euler characteristics of ~-(X,p). 

For the second theorem we need a smoothing X f 
S of 

an isolated singularity (X,p) over a smooth curve germ S. 

Associated to such a situation there is a Limit Mixed Hodge 

Structure on the cohomology groups Hi(Rw) ~ Hi(Xt,~)- The Hodge 

filtration can be described as follows: take an embedded 
n resolution of X in X to obtain a space y -----+ x. We may 

assume that Y:=(fon)- 1 (0) is anormal crossing divisor, reduced 

after a finite base change. On the space y we can consider the 

complex K·= Q;;s(logY) of relative ~ifferential forms with a 

logarithmic pole along Y. Let E = n (p) be the compact part of Y. 

The complex K"® OE can be used to give Hi(Rw) its Mixed Hodge 

Structure and one has: 

In particular, Gr~ Hn(R~) can be identified with: 

(2.2.7) 

by the adjunction formula. Here D = E n X, where Xis the strict 

transform of X in y (and for non-isolated singularities the union 

of all non-compact components of Y).(For all these facts see 

[Stee 3], [Stee 5].) Now one has: 
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(2.2.8) Theorem C[Stee 3]) : Fora smoothing X S of an 

isolated singularity one has: 

(2.2.9) Remarks: 

1) For isolated hypersurface singularities theorem (2.2.8) was 

proved by M. Saito [Sa]. 

2) For singularities with the property that Hi(Rw) = O for all 

but one value i=n (so called spherical singularities, for 

example complete intersections, see [Lo]) one has semicontinuity 

of all Gr~ Hn(Rw), see [Stee 4]. 

3) One should proof (2.2.6) and (2.2.8) at the same time by 

proving that for a general flat deformation X 

isolated singularity (X,p) one has: 

n n 
Pg(X,p) - EqeXt Pg(Xt,q) = GrF H (Rw) 

f S of 

where H(Rw) is the vanishing cohomology of the given family. 

So for isolated singularities we have a number p with good g 
properties and for non-isolated singularities there is a complex 

an 

in the derived category, but so far we do not have a single 

semicontinuous invariant for a non-isolated singularity. The 

problem is: How does one formulate semicontinuity properties for a 

complex? 

One such property was discovered by Elkik: general non-isolated 

rational singularities only deform into rational singularities. 

The next step is: look at singularities for which the complex 

~-(X) is concentrated at one point p (i.e singularities which are 

rational outside one point). There does not seem tobe any problem 

in proving the semicontinuity of the Euler characteristic in that 

case. But surfaces with non-isolated singularities are not of this 

type, so we will not pursue this any further here. 

Another try might be: look at the Hodge numbers of the vanishing 

cohomology. But these are (of course) not always semicontinuous: 



(2.2.10) Example Let X= {(x,y,z) e ~ 3
1 y3 - z2 = o }. 

Then H2 (Rw) = 0 for the canonical smoothing 

given by the equation of X, but X deforms into isolated 

singularities with arbitrarily high p. g 

However, there do exist non-isolated surface singularities that 

deform only to isolated singularities with a bounded p, most g 
notably the singularities A and D . Example (2.2.10) is not 

00 00 

weakly normal, A and D are. In the next of this chapter we shall 
00 00 

try to convince the reader that for weakly normal surfaces a 

satisfactory theory of p does exist. g 



§ 2.3 Geometrie Genus for AWN-surfaces 

In (2.2.4) we defined the genus ~·ex) of a non-isolated 

singularity with the help of a resolution. In the spirit of 

improvements (see § 1.4) one may try the following kind of 

'punctual' definition of p : 
g 

(2.3.1) 

maps Y 

Definition Let (X,p) be a germ of an analytic space. 

1T 
Let m{X,p) be the directed system of all 

X such that: 

1) ,r is proper 

2) y - ,r-l(p) X - {p} is an isomorphism (and 1r-
1 (p) is 

nowhere dense in Y). 
3) Y is Cohen-Macaulay and smooth on a generic point of ,r-l(p). 

So all maps ,r in m(X,p) are concentrated by construction. We put 

p ( 1T ) : = ( -1 ) n+ 1 • X ( 1T ) (n = dim(X,p)) 

Pg(X,p) := 1 i m { P(,r) 1 1T E m(X,p) } 

It is totally unclear in what sense this 

limit exists. For example, m(X,p) could be 

empty. Something like condition 3) is really needed to give this 

(2.3.2) Remark 

limit a chance. In any case, it is clear that for an isolated 

singular point this definition agrees with (2.2.4), the limit 

being attained by a resolution. 

For surface germs we can compute this limit: 

Let (X,p) a purely two-dimensional germ with 

X - {p} reduced. Then the limit of (2.3.1) 

exists and is INFINITE when X - {p} is NOT weakly normal. 

(2.3.3) Theorem 

proof: Let Y 1T X be a modification in m(X,p) and let the 

z 
3) the map Z 
points, lying 

q Y besuch that 1roq e m(X,p). By assumption 

Y is a modification in a finite number of 

in ,r-l(p). As Y is assumed to by CM, we have 

q 

q*vZ = vy. A little computation now learns that: 



Hence P(~) is monotonically non-decreasing for the partial 

ordering given by the domination relation. 

Now given a surface germ (X,p), we can always find an improvement 

in the sense of (1.4.2) (see remark (1.4.5)). So we assume that Y 

has a smooth one-dimensional singular locus I, that the 
N 

normalization Y is smooth, and that I is smooth. We now give I and 
N 

I the possibly non-reduced structure of the conductor (1.2.11) of 
N 

the map Y ---+ Y, so that Y is a push-out (1.2.2). As Y has 

depth 2, I and I are CM (no embedded components) by (1.2.12). 

When X - {p} is not WN, it follows from (1.2.20) that there is a 

component of Y on which I is not a reduced curve. Choose local 
C coordinates x,y in this component, such that x = 0, c ~ 2 is an 

eguation for I. 

Now blow up in the point (0,0). The resulting space we call Z. 
N N 

Let A be the (non-reduced) strict transform of I in Z. The map 
N 

I induces an inclusion vN I 
coordinates looks like: 

vN which in 
A 

C{u,v}/(uc) ; x = u.v, y V 

Now form the push-out Z on A Z and A I (via 

A ___ I ---+ I) as in (1.2.6) . We getan induced map 

g: Z ---+ Y by the universal property. In general Z will not 

be Cohen-Macaulay, but because Z is a surface, we can give it 
C depth 2 {see{l.1.4)). Let Z ---+ Z be the CM-ification map. 

Note the exact seguences of glueing: 

0 0 

0 ---+ Vz --- n,,,vz ---+ n,,,vA/vI ---+ 0 

Taking g,,, of the second seguence, and using R
1g,,,n,,,vz = 0, g,,,vz=vy 

g,,,n,,,vz = n,,,vy and combining i t wi th the first seguence gi ves: 

0 0 

So dim R1g,,,vz > 0, but this does not guite proof what we want, 

because Z need not be CM. We claim however that also R
1q,,,c,,,vz 1 0. 

This can be seen as follows: Take g* of the seguence 

66 



0 Vz C*VZ 0 I dim(~) < 00 

gives 0 ~ 
1 

R q*vZ 
Rl A 

q*c*vZ 0 

So we have to exhibit an element in 1 
R q*vZ ~ VA/Vi which is not in 

~- As in the proof of (1.2.22) one sees that the elements of ~ 

correspond to torsion elements in n*vA/vI. 

Consider the element u e vA, in the coordinates as above. It is 
1 clear that u E Vi , so u represents a non-zero element in R q*vZ. 

Further, the class of u in n*vA/vI cannot be torsion. Namely, 
m m m-1 assume v .u e VI for m » 0, but v .u = y .x, meaning that the 

class of x is torsion in n*vi/VI . As Y was CM, it would follow 

that x e vI, and consequently, the conductor would be reduced, 

contrary to our original assumption. 

So starting from a modification Y 1T X we constructed 

another one, namely Z ,rQqQc X with P(1rQqQc) > P(1r). Iterating 

this construction shows that the limit is infinite, as soon as 

X - {p} is not weakly normal. • 

Without the condition 3) on ffl(X,p) there may 

very well exist chains of modifications along 

which P(1r) is decreasing. 

(2.3.4) Remark 

Theorem (2.3.3) already shows the special role played by the AWN

surface germs. For these surfaces we have: 

(2.3.5) Theorem Let (X,I,p) be an AWN-surface germ. 

Then Pg(X,p) = 1 im { P(,r) 1 1T e ffl(X,p) } 

is FINITE. 
The limit is attained for every improvement Y 1T X. 
Further, if X n Xis the normalization map, I = Sing(X), 

I = n-l(I), taken with their conductor structure, then: 

where the 6-invariant is as in (2.1.9). 

proof 

y 1T 

As improvements are cofinal in ffl(X,p), we only have to 

prove 

X. 

N 

P(1r) = p (X) + ö(I) - ö(I) for one improvement 
g 
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We use the 

There is a 

0 

0 

where ,.i' = X 

0 

0 

notation as in§ 1.2 and 

pair of exact sequences: 

,.i'x 

1s 
,.i' X 

0 
ge{p} (OX). 

OX 

l 
VI 

Similarly for Y: 

o~ y 

l 

(1.4.7). 

o~ 
X 

l 
o~ 

I 

There is mapping from the first diagram to R1r* 
diagram, giving rise to : 

0 1T*VY 
1 

1T*OY • • 1T *~ ll R 1T *OY 

T l T T 
,.i' X C. • OX o~ 

I ~I 0 

and 0 

,.i'x _, __ ... 

~I 0 

1s 
~I 0 

0 

0 

of the second 

• Rl ~ 1T*O'i. • 

0 

0 

both with exact rows (we suppressed some maps, like n*, from the 

notation). 

Taking the alternating sum of the indices of the vertical maps 

gives: 

and 

Combining this we find: 
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p ( 1T) . - dim 1 
dim Jd'e{~} (<Dx) 

1 .- R 1T*<DY + - dim Jd'e {p} 

Rl,r*«)Y 
N 

= dim + c5(!:) - c5(E) 
N 

= p (X) + c5(!:) - c5 ( l: ) g 

The theorem is proved. • 

(2.3.6) Remark If X happens tobe weakly normal at p, the 
N 

curves E and l: are reduced, even at p 

(see (1.2.13)). If Xis WNCM, then c5(l:) ~ c5(l:) (see (1.2.24)), so 
N 

in that case p (X,p) ~ p (X). 
g g 

This suggests the following approach to the problem of classifying 

WNCM-surfaces with low values of p: 
g N 

1) Classify finite mappings of curves E E with 

N 

b. c5(E)-c5(E) small 
N N 

2) Classify embeddings l: X with Pg(X) small. 

In chapter 4 we make a start with this program. 

(2.3.7) Example: The partition singularities of § 1.3 have 

Pg(X,p) = 0. 

In (1.2.25) we constructed certain WNCM-surfaces with A1 as 

transversal singularity, obtained from ~ 2 by identification with 

Z/2 - action on a curve. For these it is very easy to compute the 

invariant p . We pick out one particular type of these to 
g 

illustrate some interesting points: 

(2.3.8) Example We take a special look at the following two 

examples: 

A. E = ( XJ x,y -x,-y I E = ( -<J Pg = 2 - 1 = 

B. E = ( X ) x,y x,-y ,!: = (-· ) Pg = 2 - 0 = 

cn 

1 

2 



The first singularity is non-Gorenstein, with embedding dimension 5. 

The second one is a hypersurface. 

In both cases the minimal good improvement (1.4.12) looks like: 

·---- -----------

The difference between A and Bis due to a difference in the 
N 

identification map between the discs, making up Ac Y. One can 

imagine this identification to change continuously from A to B. 

The guestion arises: what happens to the singularity when we do 

this? 

We take up a bit more general example: 

X= c 2 , i = J(x,y) e c 2 1 y2 = x 2k}. We want to glue the two 

branches of I together. This can be done as follows: Consider 

• 1 c ---. c 2 ; s .,__ _ _. ( s, sk) 

2 k k * 
• 2 C --• C ; s ~-~ (l.s,-1 .s) l e C 

N 

So the •· map to the two components of I. 
J. 

The ring R = IOx of functions onthe space X we are looking for 

consists of those polynomials P = P(x,y) with the property that 

•~P = .;P. Clearly, every function in the ideal (y2 - x2k) of i 
fulfils this condition. Modulo this ideal every function has a 

unigue representation as P = A(x) + B(x).y. 

When we wri;e A(~) = E n~l an.xn, B(x) = E n~O bn.xn. The 

condition • 1P = • 2P is now equivalent to the following system of 

eguations for the the coefficients an and bn 

1. p. i - 1). ai = 0 i = 1, 2, ... , k-1 

2. k+i ( >. k+ i + 1 ) . b . i 0,1,2, ..... (>. -1).ai+k = = J. 

When we introduce auxiliary polynomials • by the formula: 



m = 0, 1, .... 

one sees that the ~•s represent a basis for the solutions to the 

second set of the equations above. It is easy to verify that one 

has the following identity: 

I(m,_1) : 

~(m+k).~(l+k) = 2.~(m+l+2k) + xm+l.F.(Xk+m_ l}.(Xk+l_ l} 

where F = y2 - x2 k 

From this it follows that the ~'s generate inside the ring 

~r = ~[x,y]/(y2 - x2k} an algebra isomorphic to 

k k+l k+2 ~[s ,s ,s , ... ] c ~[s] 

If Xis not a p-th root of unity for p = 1,2, ... ,k-l, then no a. 
1 

can satisfy the first set of equations, so then the ~•s are all. 
k k+l k+2 In that case ~I = ~[s ,s ,s , .... ], so: 

N 

p
9

(X} = 6(I) - 6(I} = k - (k-1} = 1 

(One can check that ~i/OI is torsion free, so Xis CM.) 
To find generators for the ring R, we can apply (1.2.9} which 

garanties that R (strictly speaking: a completion of R} is 

generated by: 

~(k},~(k+l), ... ,~(2k-1) 

F, x.F, ... , k-1 k 
X . F, ( y+ X ) • F 

However, we do not need all these generators: 

lem.,m,a, : 
2 k If XI 1, k~4, then x .F, ... ,x .Fe ~[~(k), ... ,~(2k-1)] 

(1/1.ßet: For X= -1, this is trivial. The above identities 

I(m,m+2) and I(m,m+3} show that x2 (m+l}_F and 

X
2(m+l)+l.F , 2~ are in the algebra generated by the ~ s if X rl • 

'eellßUaA,y. If xP11, p=l,2, ... ,k-1 (k~4}, the ring of X is 

generated by F, x.F, y.F, ~(k}, ~(k+l), ... ,~(2k-1), so 

we getan embedding X __ __,. ~k+ 3 (minimal by reasons of 

degree). 
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If X specializes to a root of unity, the situation changes 

drastically. The most degenerate case is X= 1. In that case we 

find @I = C[xJ, @I-basis for @i : 1, y, so the ring is generated 

by x, Fand y.F or, x, y
2 

and y.F, so Xis a hypersurface. For the 
~ 

geometric genus one finds: Pg = 6(I) 6(I) = k - 0 = k. 

Consider now a small disc A in the X - plane around the point 

X= 1, not containing p-th roots of unity for p = 1,2, ... ,k-1. 
* 

For every Xe C we constructed above a space XX. For X= 1 it is 
* a hypersurface, for Xe A := A\{l} it is not. So the family 

{XxlX e A} __ _,.. A does not represent a flat deformation of x
1

. 

But consider the following family: 

A 

Let Y be the fibre over X= 1 of this family. Its ring is 

generated by: 

F, x.F, y.F, k k+l 2k-1 
X,X , ... ,X 

Clearly this ring is not CM. The CM-ification is just the ring of 
2 k-1 the space x1 ; the 'missing functions' are x, x , ... , x . So we 

get Pg(Y) = pg(X1 ) - 6(Y) = k - (k-1) = 1. So the family 

X __ _,.. A has constant p (as it should be in a family with 
g 

simultaneous improvement). 

There are several other remarkable cases when X specializes to a 

root of unity. 

If p .f' k 

Assume that 

xP.t/l(k+m) = 

If p .f' k,k+l 

then 

then 

Xis a primitive p-th root of 

tP(k+m+p) 

F, y.F e C[t/l(k), ... ,t/1(2k-l)J 

x.F e C[t/l(k), ... ,t/1(2k-l)J 

unity. Then: 

The first statement is trivial. By I(O,O) we have 

tP(k) 2 - (Xk - 1) 2 .F = 2.t/1(2k) = 2.xP.t/1(2k-p), hence Fis 

in the algebra generated by the tP's. The rest is similar • 

..,..., 



~q11,qllaA.y If Ais a primitive p-th root of unity and p~ k, k+l 

then the ring of Xis generated by: 

xP, ~(m), m e [k,2k-1] & p ~ m 

So in that case the curve I spans the space in which X can be 

embedded minimally. 

The most remarkable case is when A3 = 1. If 3 ~ k, k+l then 

k = 3m-2 for some m, so we get a hypersurface ring, generated by: 

x3 , ( ' + 1).x3m-2 (' 1) " + " - .y , (A2 + l)x3m-1 + (A2 - 1).x.y 

This is Mond's simple singularity of type Hm (see (1.2.26), [Mo]) 

in slightly different coordinates. For this singularity one has 
N 

Pg(Hk) = 6(I) - 6(I) = (3k-2) - 2(k-1) = k. 

J. Stevens remarked that these singularities should be 

compared with the isolated singularities with resolution graph: 

-----------

t1J 
o----• 

-1 

The parameter A corresponds to the normal bundle of the elliptic 

curve in the resolving surface. 



§ 2.4 The Dualizing Sheaf 

Let Y be a weakly smooth surface (1.4.4), so Y is assumed to 

have only partition singularities (1.3.1). We want to describe the 

dualizing sheaf of Y. 

Westart with a more general situation: 

(2.4.1) 

l 

Proposition 

X 

Consider a push-out diagram as in 

§ 1. 2 : 

Assume that all four spaces are Cohen-Macaulay and that I is of 
N 

pure codimension 1 in X. Then there is an exact sequence of 

sheaves on X: 

0 

where w denotes the dualizing sheaf. 

proof Consider the exact sequence 

0 /J <DN 
X 

<DN 
I 0 

and apply Yee-m(- , W_x) to this to get: 

0 WX Yee-,m,<D N (/!, W_x) WI 0 
X 

because WI = ~xt~N (<Di,wx> 
X 

Similarly, we get from /J <Dx <Dr the sequence: 

0 WX geo,m,<D ( /J, w X) WI 0 
X 

The map n: X X induces a map between these sequences: 
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(2.4.2) Diagram 

0 n* (.,Jx n,r,.9'ee,m,<ON (J",wx> n* WI 0 

f 1s X l 0 wx .9'ee,m,<O ( d, w X) wE 0 
X 

The middle map is an isomorphism by the duality morphism (2.2.2) 

(note that we deliberately confused d with n*J" ). By the 
snake lemma the proposition now follows. 

(2.4.3) Remark When we apply .9'ee,m,<O (-,wi) to the sequence 
E 

0 0 

we end up with a short exact sequence: 

0 0 

(2.4.4) Remark: If Eisa Cartier divisor on X then one has 
N 

d = <O_x(-E), so in that case: 

N 

Yee,m,<ON(d,wx> = wx(E) 
X 

It is tempting to define wX(E) by this equation, even if Eis not 

Cartier. 

The exact sequence of (2.4.1) thus can be derived without 

• 

knowing what the dualizing sheaf is ! We however always will think 

about wX as a sheaf of certain differential forms. As an 

illustration, we consider the case of a partition singularity. For 

simplicity we take the ca~e X= X(n) and use the coordinates as in 

(1.3.4) : x = un; yi = u 1 .v, i = 0, 1, ... , n-1. 

The sequence: 

0 (.,J N 
X 

N 

W_x ( E) 

P(u,v)duAdv 
v 

Res (.,JN 
E 0 

P (u, 0). du 

expresses that ele~ents of wi are residues of forms on X with a 

simple pole along E. 
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The map n*wE 
k u .du 

n-1 u .du 

w l: 

0 

dx 
7i 

is the trace map: 

k = O, 1, ... , n-2 

Generators for wX as an ~X - module thus can be represented as 

duAdv , uduAdv , u 2duAdV , ..... , un-2duAdv 
v v v 

The sequence 0 WX 0 

expresses the fact that wX 

with a simple pole along r 
residues over a fibre of r 

can be thought of as differential forms 

with the property that the sum of the 

r is zero. 

The exactness of the sequence (2.4.1) is now obvious. 

(2.4.5) Proposition "Grauert-Riemenschneider for 

Improvements" : Let Y 

improvement in the sense of (1.4.2).(A reduced) 

1T X be an 

Then: for i 2:: 1 

proof: According to (2.4.1) and (2.4.3) there are exact 

sequences: 

0 n*w~ Wy geq,m, (:g A' w A) 

0 Yee,m, (~A,wA) n*wi WA 

(we use the standard notation (1.4.7)) 

By ordinary Grauert-Riemenschneider for 1 I A and A we have 

Ri1r*n*w1 = O 
i = 0 I R 1r *n*wd I 

i 
R 1r *w A = 0 for i 2:: 1 

0 

0 

We are done by R1r* of the above sequences, when we know that 

R1 1r*Yee,m, (~A,wA) = O. But because A was assumed tobe smooth, the 

sequence of (2.4.3) is split (c.f. (1.2.18)) so the result 

follows. 

(2.4.6) Corollary: If (X,p) is WNCM-surface germ, then: 

where Y 1T Xis any improvement. 

proof 
1 

This is a formal consequence of R 1r*wY = 0 

7F. 

• 

• 



§ 2.5 Semicontinuity of the Geometrie Genus 

For every almost weakly normal surface (X,I,p) we have defined a 

number Pg and called it the geometric genus. So far it only is a 

number and might be of limited relevance. The purpose of this 

paragraph is to show that it has at least one interesting 

property: Pg is semicontinuous under every flat deformation over a 

smooth curve germ. 

(2.5.1) Definition An AWN-surface germ (X,p) is called 

weakly rational if and only if 

p
9

(X,p) = 0, where pg is the invariant defined in (2.3.1) 

(2.5.2) Remark Even for isolated singularities this 

condition is really weaker than rationality 

in the sense of (2.2.4), so also in that case it seems tobe a 

proper name. 

Let (X,p) be a germ of an analytic space. We consider flat 

deformations of X over a smooth curve germ (S,0). 

This means that there is a diagram 

X X 

l 
{ 0} s 

---- - - --- -- ------~--

wi th f a flat map and X= f-
1

(0). 
f We simply say that X ---+ S is a flat deformation of X and we 

call f- 1 (t), t~O the general fibre of the family. 

(2.5.3) Lemma Let X f S be a flat deformation of a 

space X. If Xis WN outside a set of 

codimension ~ d, then the same is true for X. 

proof: Consider the weak normalization map w: X x. 
The locus of non-weakly normal points of Xis the 

analytic set M : = support (w*<!'.>.i/<!'.>x). There is a 'mul tiplication by 

t' diagram with exact rows: 



0 t 
0 

0 t 
0 

Here t denotes multiplication by t, a local parameter on s and 

X'= w-
1

(X). As X __ _,. Xis a homeomorphism, X' -----+ Xis 

also a homeomorphism. Hence the set of points where X' -----+ x 
is not an isomorphism, is contained in the set N of non-WN points 

of X. Hence Mn X s N, from which the lemma follows. • 

(2.5.4) Corollary If Xis WN, then X also is. If X - {p} is 

WN, then Xis WN outside a curve, and the 

nearby fibres Xt are WN outside a finite set. 

We thus see that our class of AWN-surface germs (X,p) is closed 

under (small) flat deformations. 

(2.5.5) Now we take a closer look at the general structure of 

the total space X of a flat deformation of such a 

surface (X,p). One can distinguish (at least) three types of 

deformations: 

1) The fibres Xt ,tlO, are all smooth. In this situation it is 

usual to call X f Sa smooching of X. The singular 

locus E of Xis contained in the singular locus of r of X. 

2) The fibres Xt ,tlO, all have isolated singularities. The 

singular locus E of Xis one-dimensional and contains two 

kinds of components: the horizontal components Eh, lying finitely 

over the curve Sand consisting of the singularities of the fibres 

Xt; the vertical components Ev lying in X and consisting of 

components of r. 

3) The fibres Xt ,tlO, all have non-isolated singularities, 

besides possibly some isolated ones. The singular locus E of 

Xis now two-dimensional. It consists of a purely two-dimensional 

part T, sweeping out the non-isolated singularities in the fibres 

and cutting X in a number of components of r. We put rT = T n X. 
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Further we have as under 2) curves Eh and Ev, so we can write: 

Note that T n Ev = T n Eh= {p} (in general). 

The curves Ev and Eh are in general singular at the point p. In 

general T is singular along ET and further along a curve lying 

finite over S. This curve is contained in the union of the special 

isolated points of the fibres. 

From this point of view there is a clear distinction between two 

types of components of E: E = ET u ER with: 

IT= In X. These are the components of I that sTay during the 

deformation. Xis not normal at a general point of ET. 

ER, the other components, which are Removed under the 

deformation. Xis normal at a general point of ER. 

In general ER makes up the vertical part Ev of the singular locus 

of x.(Only in the case of transversal A1 singularities X might be 

smooth along E.) 

We shall see in a moment that from the point of view of 

improvements the distinction between ET and ER is not very 

important. 

(2.5.6) We begin with a study of the singularities of X 

transverse to E. So let q e E - {p} be a general point 

of E and choose a hyperplane H through q, transverse to E. Thus we 

get a surface o/ := H n X together with a map o/ __ _,, S, which 

we again denote by f. As flatness is a local property, we may 

consider o/ f S as a flat deformation of v0 = X n H (with 

reduced structure). Remember that because X - {p} is WN, the 

curve v0 is isomorphic to L~ for some r (see (1.1.5)). 

(2.5.7) Proposition: The space o/ is WNCM and weakly rational. 

proof: The weak normality follows from (2.5.3). o/ is 

Cohen-Macaulay because it is the total space of a flat 

deformation of the CM curve v0 . The weak rationality follows from 

a more general result that will be proved in chapter 4 (see 

(4.4.6)). • 



(2.5.8) The fibres Vt are all WN curves, so only 

can have L: singularities. The 
normalization o/ consists of a disjoint union of isolated rational 
singularities, which have an L5 

- singularity as general 
s 

Corollary: 

hyperplane section. From this it follows that on the minimal 
N 

resolution of o/ the fundamental cycle (see § 3.4) is reduced. 

(2.5.9) Example: Consider the following general fibres of two 

different deformations of the curve L~: 

-·-----

/ 

The first picture corresponds to what can happen transverse to a 

component of IT, the second to a component of IR. 

(2.5.10) Proposition Let o/ --- S be a flat deformation 

of the curve v0 = L~. Then an 
improvement "W' of o/ contains only partition singularities of type 

~ = (1,1, ... ,1). Sing(o/) is the union of a number of smooth 
components mapping 1-1 to S. The map Sing("W') ---, S is 
unbranched. 

Proof: The proof will be given in chapter 4 (see (4.1.12)), 

after we have developed the theory of the fundamental 

cycle for improvements (§ 3.4). Philosophically the reason is 

that only the partition singularity of type~= (1,1, ... ,1) has a 
r general hyperplane section of type Lr. 

Corollary (2.5.4) gives us the possibility to compare 

Pg(X) = Pg(X,p) with Pg(Xt) := t q e xtPg(Xt,q). 

• 



One can ask whether pg(X) ~ pg(Xt), i.e. whether pg is an 

upper semicontinuous invariant I as for isolated singularities 

(see (2.2.6)). 

This turns out tobe the case (at least for X WNCM). 

Pg can be defined using an improvement, so in order to compare 

p (X) with p (Xt) it would be useful to have some kind of g g 
improvement 3/ __ _., X of the total space of our deformation 

X __ _., S, which induces an improvement Yt --- Xt for the 

general fibre, to run the proof parallel to Elkik's. I have been 

unable to construct such an improvement (say in the sense of 

(1.4.2)) for X in general. But actually, because the proof is 

largely "formal" , we do not really need the space 31 1 but only 

the cohomology of certain sheaves on it. 

(2.5.11) Let (X,t,p) be a WNCM-surface germ.(we assume the CM 

condition to avoid some technical problems). 

Let X f S be a flat deformation of X over a smooth curve germ 

(S,O). So Xis also CM. Inside X we have the surface T of 

non-normal points of x. Let X n 
X be the normalization map and 

N -1 N 

define T = n (T). We denote the map T m T by m. It is a 

finite branched covering. Let B c 

that by (2.5.10) we have B n X s 

T be the branch locus of m. Note 

{p}. 

Let A __ P_• T be an embedded resolution of B c T. So A is 

smooth, p contracts anormal crossing divisor K c A and the strict 

transform B of Bis smooth and transversal to K. Now look at the 

level curves of the induced map fcp on A. It is a family of smooth 

curves, degenerating for t=O into a curve A0 . We give it the 

analytic structure as fibre of the map A __ ...,. S. The curve A0 
consists of a compact, non-reduced part c0 and a non-compact part 

N
0

. It is important that the structure of N0 is reduoed I which 

follows from (2.5.10). The curve N0 maps via fcp to rT. Above a 

general point of rT there lie as many points of N0 as the number 

of irreducible components of X at that point. 
m Now we pull back the branched cover T __ _,, T via p over A and 

then normalize. The resulting space we call G and we denote the 

induced mapping G 1 A by 1. Hence a diagram arises: 
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G 
q 

T X 

p 
T X 

Note that the map 1: G A branches over BUK and G has 
only cyclic quotient singularities (see [Lau 1]) 

(2.5.12) In general one cannot obtain a smooth G by 

blowing up A further and taking the 

normalized pull-back. As an example one can take : 

Remark: 

G = { (x,y,z) e c 3 1 z 4 = x.y} 

This curious phenomenon does not occur for two or three fold 

covers. 

(2.5.13) Now we look at the surface Tc x. Take an embedded 
N N N 

resolution 31 TI X of Tin X and let A be the 

strict transform of T. The exceptional set of TI contains three 

kinds of components. 

1) 

2) 

3) 

A compact part E, mapping to the point p. 
-1 Apart F1 mapping properly to n (E). 

Apart F2 mapping properly to ~h-

We assume E, F1 , F2 all tobe normal crossing divisors, 

intersecting transversally, and that they are also transversal to 
N 

A. By blowing up further we can even arrange that An F2 = ß. 
On A there is an induced family of curves, obtained as fibres of 

the map fonoTI : A ---. S. The general fibre is smooth, and 

degenerates into the a curve A0 , the fibre over O of this family. 

We take the analytic structure on A
0 

as fibre in this family. 

A0 consists of a compact part c 0 =An E and a reduced non-compact 

part N0 . 

We can consider A T as a resolution of T. But as in 
N 

(2.5.11) there is also a map G ---. T which is, up to the 

quotient singularities of G, also a resolution of T. So we can 

find a space H dominating both ~ and G. 

We put all these spaces in one big diagram: 

Q') 



(2.5.14) Improvement diagram 

H r 

G g 
T X 

p 
T X 

The maps p, ~, r; a, t, n are birational. The maps l,m,n are 

finite. H, A, A, y are smooth; G has cyclic guotient 

singularities. All these spaces can considered over S. We do not 

give names to the inclusion maps. 
N 

The ideal situation would be A = G, because then we could form 
N N 

the push out on the maps A --- y and A ----+ A to get a 

space y which induces an improvement of the general fibre Xt. 

Although we cannot arrange that A =Gin general, they are egual 

on a certain cohomological level, as one has: 

RrlDH ~ OA 
Ra*oH ~ OG 

because G has only cyclic guotient singularities, which are 

rational. Instead of bothering about glueing, we will construct a 

sheaf Q on X, which plays the role of n*wY of an improvement. 

As y should be a push out, we should try to do something like 

(2.4.1). 

Westart with the exact seguence: 

0 WN 
y 0 

of (2.4.4). 

By Grauert-Riemenschneider (2.2.3) for y, this seguense remains 

exact after applying (non)* to it. 
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Further we have: a w - w r w - ~ 1 * H - G , * H - w /J. , so a so r *w ~ = g*wG . 
The map G ---+ /J. induces a spli t surjection 1 w * G ---+ w/J. 
(because Gis CM and /J. is smooth). By Grauert-Riemenschneider for 

the maps p and g it follows that (p„l)*wG __ __., p*w/J. is still 

surjective. As (p„l)*wG = (m„g)*wG = (mcr)*wh we end up with a 
surjective map: 

~ 
(2.5.15) Definition : Q := ker((n01r)*wg/(/J.) 

So this is a certain coherent sheaf on 

x. It fits in the following diagram with exact rows: 

(2.5.16) 

~ 
0 (n„1r)*w.V (n„,r)*w.V(/J.) (m„r)*w~ 0 

0 
r 1s 1 
Q ( n„ 1r ) *wg; ( /J.) p*wA 

and into an exact seguence: 

(2.5.17) 

0 

These are the pendants of (2.4.2) and (2.4.1) respectively. 

(2.5.18) All spaces in the improvement diagram map to x. Put 
* 

0 

0 

X = X - {p} and denote by an upper star above a space 

in diagram 
* example /J. 

* (2.5.14) the inverse image of X in these spaces. For 
* ~* * * = A - K. Now H __ _.., A and H __ .,... G so we 

~ * * get a finite map A --- A. So we can form the push-out 31 
* (see § 1.2) together with a map to X. By abuse of notation, we 

* * denote this rnap also by 1r:3/ __ .,... X. We can form the sheaf 

* ,r *wg/ on X . One c an exten~ thi s to the she af j * 1r *w 
31 

* on X, where 
j is the inclusion rnap of X in x. As we assumed X tobe CM, we 

84 



(2.5.19) Lemma Q is a coherent, torsion free vX - module, 

* mapping into wx. Its restriction to x 
coincides wi th the sheaf 1r*wg1* . 

Q is coherent as it is defined as the kernel of a sheaf 

map between two coherent sheaves. It is torsion free, 

because (n„1r)*wg/ and (moT)*wÄ are torsion*free. Let j as above the 
inclusion map. So we have Q __ __,. j*j Q. The restriction of Q 

proof : 

* to X coincides with 1r*w~/ because by (2.4.1) and (2.4.2) it sits 
cY * * * in the same diagram as the sheaf j Q by j (2.5.16) and j (2.5.17). 

The inclusion Q wX is the composition 

Q 

• 

The case of a smoothing of anormal surface 

singularity X shows that the sheaves Q and 

j*1r*wg1* in general are really different. The point is that Q is 

expected to have only depth 1. 

(2.5.20) Remark 

(2.5.21) 

because for 

(2.5.7) the 

(2.5.22) 

Corollary The quotient sheaf wx/Q has as support 

curve that maps finitely to s. This is 

a point g e X - {p} one has (1r*w.v*>g ~ wx,g I as by 

transversal singularities are weakly rational. 

Consider now the action of multiplication by t, the 

local parameter on S, on the exact sequence (2.5.17). 

There arises a diagram with exact rows and columns: 

0 (n„1r)*wg/ Q (m„T)*wÄ p* w A 

tf tf tf tf 

0 (n„1r)*wg; Q (ffi<>T)*WÄ p*wA 

t ! ! ! 
0 (n„1r)*wY no (m„T)*wA p*wA 

0 0 
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The first, third and fourth column are obtained from seguences 
like O __ .,... wN t wN __ .,... wN __ .,... O, which 

31 31 Y 
remain exact under direct image by Grauert-Riemenschneider 

N N 

(2.2.3). Remember that Y is the zero fibre of 31 __ .,... s. 
(Strictly speaking we should work with wy/S instead of w; ). 
The sheaf QO is defined by the exactness of the second column. The 

content of the diagram is then the exactness of the bottom row. 

(2.5.23) 

0 

Look at the seguence 

t 
0 

It is exact because Xis CM. 

There is a mapping from the second column of (2.5.22) to this 

seguence, induced by the inclusion of (2.5.19). 

Now we can apply the index lemma (2.1.10) to get: 

conclusion: Pg(Xt) = Index( Q 0 __ _. wx> 

(2.5.24) 

with Xt the general fibre of the family. 

We have to study very carefully what happens in the 

zero-fibre of f in all spaces of diagram (2.5.14). Let 
N N 

us first remind how the zero fibre Y in 31 looks like. It consists 

of three kinds of divisors: 

1) X, the strict transform of X. 

2) the components E, mapping to the point p. 

3) the components Fl, mapping properly to L 
N 

So y = X U E u F 1. 

Further there is the divisor A to worry about. 

We put D := E n (X~ Fl)~ 
Remember the :urveNA0 =An Y of (2.5.13). It consists of a non

compact part N0 =An (X u F1 ) and a compact part c0 =An E. 

Via the mappings H r A and H O G 1 A of 

diagram (2.5.14), these components N0 correspond to the 

non-compact components N0 of the curve A0 . This provides us with a 

finite map N0 --- N0 , which is branched possibly over the set 

P := N0 n c0 . The inverse image of Pis P = ~ 0 n c0 . 

We can form the push out space Z on the maps N0 --- N0 and 
N N 

No 
weakly 

X u F
1 

as in§ 1.2. As N0 and N0 are reduced Z will be 

normal (c.f. (1.2.20)). By the universal property we obtain 



a map Z X, which we call by abuse simply ~- Above a 

general point g e Ewe have the improvement of the transversal 

singularity, intersected with the zero fibre. 

The inclusions X u F1 ----+ Y, N0 ----+ A
0 

and 

N0 __ _,. A0 induce another big diagram with exact rows and 

columns: 

(2.5.25) Diagram 

0 0 0 0 

l l l l 
0 (na~)*w.XUE' • ~ *Wz--+ cma-r)*wN p*wN 

1 0 0 

l l l l 
0 . (no ~) * Wy Qo cma-r)*wA p*wA 

0 0 

l l l 
N 

l 
0 (na~)*wE(D)-. m (mo-r)*wA(P)--+ p*wC(P)--+ 

0 0 

l l l l 
0 0 0 0 

0 

0 

0 

The first, third and fourth column arise from the above mentioned 

inclusion maps. The top row is the push-out seguence (2.4.1), to 

which a direct image is applied. Again the Grauert-Riemenschneider 

theorem garantees that exactness is preserved. The middle row is 

the bottom row of diagram (2.5.22). Using the slightly extended 

diagrams (2.4.2) for wz and (2.5.16) 0 for QO one can check that 

there really is a sheaf map ~*wZ __ ...,. S2
0

. 

The content of the diagram is that the cokernel m of this last map 

fits in the exact bottom row. 

(2.5.26) Corollary: The dimension dim{HO(ffl)) is egual to 

dim H0 (wE(D)) + dim H
0

(wc (P))- dim H
0

(wc (P)) 
0 0 

where the global sections are taken over the spaces on which these 

sheaves live. 
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(2.5.27) Lemma Let Y 

Then 

p X be an improvement of X. 

proof Remember that we had a map Z n X. It maps No to 

r and as N0 is smooth, the map N0 --- r factors 

over the normalization A --- E (we ran out of symbols ... ). 

Let U be the image of X in in Z and F the image of F1 and form the 

push-out space Y on the maps N0 
map Z n X factorizes into z 

U, N0 
C y 

Claim 1) Y p Xis an improvement of X. 

Claim 2) c*wZ = Wy-

p 
A. The 

X. 

1) : The normalization of Y is X, so is smooth. The singular 

locus of Y is the curve A, the inverse image of A in Xis 

the curve N0 , so is also smooth. Y is weakly normal, and outside 

the point p the spaces X and Y are isomorphic, by construction. 

2) : Because the transverse singularities of X are weakly 

rational the fibres of the map Z --- Y above a point 

q er - {p} do not carry higher cohomology. From this one can 

deduce that Rc*<OZ ~ <Dy, and by duali ty c*wZ = Wy . 

From these two facts the lemma follows. 

Now we can finish the proof of the semicontinuity theorem: 

(2.5.28) Theorem Let (X,E,p) be a WNCM-surface germ. 

• 

Let X 
f 

a smooth curve germ S, and let X s 

S be a flat deformation over 

-1 = f (s) be the fibre over s. 

Then: 

Pg(X) = Pg(Xs) + dim H
0

(m) 

so in particular: 

p (X) ~ p (X ) g g s 

Here dim HO(m) is the number given by (2.5.26). 
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proof Consider the diagram of maps: 

r r 
= 

From the additivity of the index we get 

Index(Q 0 ---+ wx) + dim Coker (n*wZ ---+ Q0 ) = 

= dim Coker (p*wY __ _., wx), where we applied lemma (2.5.27) by 

identifying n*wZ with p*wY. By the conclusion of (2.5.23) and 

formulas (2.5.26) and (2.4.6) the theorem follows • 

(2.5.29) The whole set-up of this proof may look 

cumbersome and would even look more so when 

we did not assume X tobe CM, which allowed us to work with a 

Remark 

single dualizing sheaf, instead of a complex. Probably a more 

systematic use of simplicial resolutions would both clarify and 

generalize the above proof. This is an interesting future project. 

(2.5.30) A slightly different approach to the semicontinuity of 

p is as follows: g 
Start with a flat deformation X f 

~ ~ 
to X and study the resulting family X 

S. Now first normalize X 
~ 

S. As X is normal, 

this is a flat deformation of its zero fibre x1 to isolated 

singularities (type 2) under (2.5.5)). It is easy to see that x1 is 

an AWN-surface. For such a deformation to isolated singularities 

it is easy to prove (2.5.26) and (2.5.27) : no glueing with a Ais 

needed. This leads to: 

pg(X1 ) = dim H
0

(wE(D)) + Pg(Xs) 

where Xs is the norm~lization of the general fibre Xs. 

Let r
1 

= Sing(X
1

) ~nd r 1 the inverse image under the 

normalization map X __ ..,.. x1 . Now the formula of (2.5.28) is 

equivalent to 

These last two terms are also 6 - invariants of certain curves. 
~ ~ 

Let U T, U T be the normalizations of the 

on 



surfaces T and T i uo and u 0 the zero fibres of the induced maps 
to s. Then 

6 (U
0

) = 0 
h (wc(P)) 

N 

h
0

(wc(P)) 6 (U ) = 0 

In the special case that the surfaces Tand T are non-singular at 
N 

a generic point of their zero fibres T0 and T0 one can use (2.1.7) 
to write : 

N 

6(T0 ) = 6(E
5

) + 6(U0 ) 

6(T0 ) = 6(Es) + 6(U0 ) 

Hence, in that special case: 

N N N 

6(E) - 6(E) = 6(El) - 6(El) + 6(To) - 6(To) 

This looks really simple, but I have been unable to establish this 

relation directly. 

From the above discussion it follows that 

(at least when Xis WNCM) the number 

6(E)-6(E) is also upper semicontinuous. Of course the invariant 

(2.5.31) Remark 

N 

"p of the normalization" is not semicontinuous, nor are 6(E) and g 
6 ( E) . 

(2.5.32) We conclude with a remark on the case of a smoothing 

X 
f S (type 1) under (2.5.5)). When we 

specialize the formula of (2.5.28) to this case we obtain: 

Comparing this with (2.2.7) we can interprete the geometric genus 

in this more general situation of a smoothing of a WNCM surface 

germ still as the holomorphic part of the vanishing cohomology: 

Pg(X) = Gr:H
2

(R~) 

In my opinion this interpretation is the 'deeper reason' for the 

semicontinuity of Pg· 



CHAPTER 3 

CYCLES ON IMPROVEMENTS 

For normal surface singularities there exists a well developed 

calculus of one-cycles on the resolution. These cycles may be 

thought of as infinitesimal neighbourhoods of the exceptional 

locus in the resolving surface. In this way one can, at least for 

the simplest classes of singularities, like rational and minimally 

elliptic singularities (see Chapter 4), reduce the study of the 

singular surface to the study of a non-reduced curve: the 

fundamental cycle. 

In this chapter we want toset up a similar theory for 

improvements of weakly normal surfaces. Although the 

generalization is straightforward, the distinction between Weil 

and Cartier divisors gives some unexpected twists. 

§ 3.1 Cycles and subspaces 

We fix the usual situation as in (1.4.8). We assume that the 

singular locus A of the improvement space Y is transverse to the 

exceptional locus E. 

Remember (see(l.3.5)) the special lines L. , i=l,2, ... ,k on the 
l 

partition singularity X~. For every special point s e S =An Ewe 

can choose an isomorphism (Y,s) ----+ (X~(s)'O) such that 

(E,s) ----+ (L,O), where L = U Li ,and where the partition 

~{s) = {a(l,s),a(2,s), ... ,a{k(s),s)) depends on the special point 

s under consideration. 

Let us briefly recall the distinction between Weiland Cartier 

divisors on a space Z. A Weil divisor Don Z is a finite sum 

D = ~ a.Y. , with the a. e z and the Y. irreducible subspaces of Z 
~ l l l l 

of pure codimension 1. It is called effective if a. ~ 0 for all i; 
l 

its support, supp(D), is the set U {Yil ai ~ O }. Dis called a 

Cartier divisor at x e Z if around x, Dis the divisor of a 

meromorphic function. A Weil divisor is a Cartier divisor if it is 

Cartier at every point.(see[Ha 2] for more precise definitions). 



The set of Weil divisors on a space Z forms in an obvious way a 

group and the set of Cartier divisors is a subgroup. 

(3.1.1) Lemma & definition The group W of Weil divisors on X 
n 

with support in the set L is 

- k w - mi=l z.L 

The subgroup of Cartier divisors with support in L is 

C = Z.A 

where A ·- E i~l a(i).Li We call A the fundamental Cartier 

divisor on the partition singularity X 
n 

Let us return to the situation of an improvement Y. 

(3.1.2) Definition A (Weil) cycle on Y is a Weil divisor on 

Y with support contained in E. 

We denote the group of cycles by Wy or W. So we have 

Wy = m Z.Ei 

where E. are the irreducible components of E. 
1 

We give W a partial ordering as follows 

if A = E ai.Ei, B = E bi.Ei, then we write A ~ B iff ai ~ bi for 

all i . We take A > B to mean A ~Band Ai B. 

The set w~0 = { A e W I A ~ O} is called the effective cone or 

the set of positive cycles. Similarly we use the notation w>O 

Inside W there is the subgroup C of Cartier cycles. 
>O >O We put c- = w- n C etcetera. 

(3.1.3) Remark It can happen that the group of Cartier 

cycles consists of O only. 

>O 
(3.1.4) To every element A = E ai.Ei e w- there corresponds a 

unigue Cohen-Macaulay subspace of Y, which we denote by 

(A,vA), or simply by A. We denote by vy(-A) the ideal sheaf of A. 

It is by definition the largest ideal such that on a point 

a e E. - Sone has vy(-A) = Vy .xai, where x = 0 is a local 
1 a ,a 

eguation for E. at a. We have: VA= Vy/Vy{-A). 
i >O 

Fora cycle A e w- the following holds : 

Q?. 



A e c~0 if and only if Vy(-A) is invertible. 

The main difference between cycles on improvements and on 

resolutions is this distinction between Weiland Cartier cycles. 

Another difference is that the subspace corresponding to a cycle 

on an improvement does not have embedding dimension two at the 

special points S in general. Usually they are not even Gorenstein 

at these points. 

§ 3.2 Cycles and modifications. 

We discuss the behaviour of cycles with respect to normalization 

and blowing up points. 

(3.2.1) Behaviour under normalization. Let Y n Y be the 

normalization map. 
N -1 

We put as usual E. := n (E.). This sets up a one to one 
1 1 

correspondence between irreducible components of E and E and hence 

gives rise to isomorphisms: 

and 

* We will usually write A for n (A). 

* n 

These isomorphisms make it possible to confuse cycles on Y and 

Y. We will as much as possible distinguish between these two 

notions, as the associated subspaces in Y and Y are very 

different. 

To compare these associated subspaces A and A we use the exact 

sequence: 

(3.2.2) 

0 0 

Here ~Ais concentrated on the set Sand its length is an 

invariant of A. 



(3.2.3) Definition rA(s) := dim~ ~A,s 

rA := E seS rA(s) 

So we can compare the Euler characteristic of A and A 

(3.2.4) 

The Euler characteristic on the normaliza!ion x(vA) can be 

computed using the adjunction formula on Y (see § 3.3). 

This local invariant rA(s) can be computed on the partition 

singularity, using the isomorphism (Y,s) ~ (Xn(s)'O) : 

(3.2.5) Proposition Let Xn, n = (a(l),a(2), ... ,a(k)) be a 

partition singularity. 

Let A = Ei~l ai.Li be a positive cycle. Then: 

min ( r(ai/a(i)1, i =1,2, ... ,k) 

where rxi means rounding up. 

Proof We use the coordinates (1.3.1). The ideal of Ais 
a a a dA = u.vX, where u = (u l,u 2, ... ,u k). Then we have 

rA(O) = dim (vxl<vx + dA)) = dim (Vil<vi + U-Vi)). 
The space Vi/u.vi has dimension E ai . The number of powers of the 

element X (the coordinate on I, see (1.3.4)) we have to divide 

away, make up the second part of the formula. 

(3.2.6) Remark We note the following two special cases of 

this formula: 

1) If Ais reduced (ai = 0 or 1) then rA(O) = E ai - 1 . 

Note that E ai is the number of irreducible components of A 

at the special point. 

2) If Ais Cartier, so A = m.A , then rA(O) = m.(a - 1). 

(3.2.7) Example Let Y be an improvement with the following 

improvement graph: 
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.----·---·--~- -------

n 

Let A = a.F, where Fis the (-1)-curve. 

Then X(OA) = X(OÄ) - rA = a.(a+l)/2 - (a - r(a/n)1). 

So this is, due to the non-linearity of A ----, rA, not a 

polynomial in a. But for A Cartier, a = m.n, it is a polynomial 

in m. 

(3.2.8) Behaviour under bloxing up: There are several cases 

to distinguish. Let us 

first consider the case of blowing up in a smooth point of Y. 

(3.2.9) Let Z p 
Y the blowing up map. It introduces an 

extra (-1)-curve on Z and induces transformations: 

p* Wz Wy i Cz Cy 

p* : Wy Wz i Cy Cz 

* defined in the usual way (see [Ha 2], .[B-P-V]). Here p denotes 

the total transforrn. If A E Wy, we denote by A e Wz its strict 

transform. 

(3.2.10) More interesting is the situation at the special 

points. For point s e S we define modifications Ei(s), 

i = 1,2, ... ,k(s) , where k(s) is as usual the nurnber of 

irreducible cornponents of (Y,s). Using the isomorphism 

(Y,s) ~ (Xn(s)'s) , it suffices to describe it for a partition 

singularity X 
n 

(3.2.11) Definition Let X , n = (a(l),a(2), ... ,a(k)) be a n 
partition singularity. Let I its 

singular locus. The i-th elementary modification Ei 

t. : X . 
1 n, 1 xn 

is constructed as follows: 



1) Normalize X 
1T 

to get 

2) Blow up in the i-th 

3) Consider the strict 
}: y and }: 

X = u. k XJ. .. i=l 
component of X and get Y 

transform E of r 
r (via 'f 

So we have maps 

r) 

X. 

4) Form the push out space X . on the two maps under 3). By the 
1T / 1 

universal property we get a map t. X . --- X 
1 1T,l 1T 

(3.2.12) Remark The elementary transformation t. is the same 
1 

as blowing up X in the ideal 
1T 

but this description is not of much help. 

When we perform such an elementary modification t.(s) we introduce 
1 

one new curve on the improvement. It is of type 1 in the 

terminology of (1.4.10). We call this curve Fi(s). 

On the level of improvement graphs t. (s) induces a transformation 
1 

that looks as follows: 

(3.2.13) Elementary modification 

. . . . 
71 TI 1----0------ .... 

• • -Cl.-1 

The modification t.(s) z 
1 

Y induces transformations: 

* 
Ei (s) Wy 

Ei(s),. : Wz 

Note that there is no natural map Cz 



(3.2.14) A Cartier model Z is an improvement 

obtained from another improvement Y by 

performing at all special points s e S of Y the transformation 

Definition 

E(S) := E1(s)oE 2(s)o ... oEk(S) 

We call E := n E(S) : z __ __,, y the Cartier modification. 

Lets e S be a special point of Z (we can safely identify the set 

of special points of Y and Z). In the neighbourhood of s on Z there 

now exists a Cartier divisor 

- k F(s} - Ei=l a(i,s}.Fi(s) 

It corresponds via the isomorphism (Z,s) ~ (Xn(s}'s} to the 

Cartier divisor A of (3.1.1). 

Cartier models have the convenient property that their 

exceptional set Eis covered by the supports of indecomposable 

Cartier divisors. These are of two types: 

1) 

2} 

The divisors F(s) , s e S 

The irreducible curves E. that do not intersect A. 
1 

We can write : 

w = e z.F.(s} e e z.E. 
1 1 

c = e z.F(s} e e z.Ei 

Every Weil divisor Ais contained in a unigue smallest Cartier 

di visor ~ (A}: 

(3.2.15) ~(A} = inf{ Be C I B ~ A J 

Another interesting modification is just blowing up at a 

special point s e S. 

(3.2.16) Proposition Let X , n = ( a ( 1}, a ( 2 } , ... , a ( k)} , be a 
n 

partition singularity. 

Let B(Xn} b Xn be the blowing up in 0. Then 

b- 1 (0) consists of a ~l in every irreducible component of B(Xn), 

on the i-th component with multiplicity a(i). They intersect in a 

unique point g, where B(X) has a singularity isomorphic to X 
n n 

itself. More precisely: (B(Xn),b- 1 (0),g) ~ (Xn,A,O}. 

Further, on the i-th component of b- 1 (0} the space B(Xn) has an 

extra Aa(i} _ 1 - singularity. 
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proof It suffices to analyse what happens to an irreducible 

component of X , so we assume n = (n). We write the n 
equations as in (1.3.5): 

rank ( 1 

The substitution x = s; y. = s.t. , i=O,l, ... ,n-1 transforms the 
l l 

matrix into s times this same matrix with x replaced by s and y. 
l 

by ti, so in this chart we get back the same partition 

singularity. The substitution x = s.w; y
0 

= s; y. = s.t. leads 
l l 

to the equations t. = t 1 .t. 1 i = 2,3, ... ,n-1 and s.w = t 1 .t 1 , 
i 1- n-

hence in this chart we getan A 1 - singularity. One can check n-
that in the other charts B(X) is smooth. It is almost clear that 

n 
the multiplicities are as stated, because blowing up in O is the 

same as making the maximal invertible, so b- 1 (0) is Cartier on the 

blow up B(Xn) 

(3.2.17) Definition Let Y be an improvement and s e Sa 

special point. The n - modification 

n(s) z y 

is obtained by first blowing up at s and then taking the minimal 

resolution of the Ak - singularities that appear. 

(3.2.18) Remark 

n(s) 

n(s) can be described in terms of the 

elementary transformations E.(s) as 
1 

It has the following effect on the level of improvement graphs: 

nn 

• 



(3.2.19) TJ transformation. 
o({lJ 

. r.-:-.-=:_-__ -____ ,,A__:-::~---- n 1 
-.- --= -.,...-.. - . . . 

TI • . . . ----•'--••- ... 
• 

---.-------------· ------ -

• . .... 
----v,-----_,/ 

ot(k) 

(3.2.20) Definition: An elementary chain is a chain of 

curves Fi, i = 0,1, ... ,ß, on an 

improvement having the following properties: 

1) Each curve Fi is a smooth ~ 1 . 

2) Fi n s = ~, i # ß; Fß n s = s. 

3) The self-intersection of F. is -2 1 i # ß 
1 

the self-intersection of Fß is -1 . 

• r•• 

4) The curves Fi, i # 0, do not intersect any other irreducible 

component of the exceptional set E. 

We call F0 the begin of the chain and Fß the end. 

The number ß is called the length of the chain. A chain terminates 

at the special point s . The number a(i,s) of the partition 

singularity at which the chain terminates we call the index. 

So it looks like: 
------··---------

--- ·--------- --·-· 

----=Fo __ F. _ _,__, _ ___.,1;. --~--~- _ _.____·-------·-~--·- -¾--~----
·t • • • • • ··- ••• -·• • • 0-t 

The effect of an elementary modification on an elementary chain is 

the following: The (strict transform of) Fß becomes a -2 curve, and 

a new curve Fß+l is introduced, which now is the new end. 



§ 3.3 Intersection Numbers and the Canonical Cycle 

On a surface a Weiland a Cartier divisor can be intersected and 

on a smooth surface the arithmetic genus of a curve can be 

expressed in intersections with one special divisor: the canonical 

divisor K. As improvements are not smooth we have to reconsider these 

questions. 

(3.3.1) Definition Let A be a proper curve and $ a sheaf 

with the property that the rank of $ on 

every irreducible component is a fixed number rk($). 

The degree of $ is the number: 

deg($) := X($) - rk($) .X((l)A) 

As rank and x are additive over short exact sequences, deg also 

is. Fora line bundle 2, deg(2) is just the usual degree 

(Riemann-Roch). One has deg($®2) = deg($) + deg(2) for every sheaf 

$ as above and every line bundle 2 on A ( c. f. [ B-P-V] ) . 

(3.3.2) Definition Let Z be a surface, A and B curves on Z. 

Assume that Bis Cartier. 

The intersection number of A and Bis the number 

(3.3.3) Proposition Let Z p Z be a modification. 

Let A and B as above. Then: 

* * A.B = pA.pB 

* where p is the total transform. 

proof Well-known, or see [Ha 2]. 

Let us return to our situation of an improvement Y and consider 

the normalization Y n Y. For A e w~0
, Be c~0 

we can form 

with (3.3.2) the intersection number A.B and by linear extension 

we getan intersection pairing: 

Z ; A®B A.B 
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Now by (3.3.3) we have A.B = A.B where A and Bare the cycles on y 

corresponding to A and B. Hence we can extend the above pairing to 

a pairing between two Weil divisors: 

(3.3.4) 

Z ; A®B A.B (=:A.B) 

A fundamental fact about this pairing is that it is negative 

definite, by Mumfords result for normal surface singularities 

(see[Mu]). By restriction one obtains a pairing 

Cy ® Cy --- Z 

which is also negative definite. 

We mention all this, because there is another natural extension of 
the intersection pairing w~ 0 ® c~0 ___ z . 
Note the following useful: 

(3 . .3.5) 

proof 

Lemma: 

This is an easy exercise in diagram chasing and 

definition reading. 

One can read this last equation as a definition of A.B and so 

extend the intersection pairing to two Weil divisors. We do not 

take this approach, because due to the non-linearity of the 

function A i---• lA (see (3.2.7)), this would not give a 

bilinear pairing. Usually (3.3.5) is wrong for two Weil divisors. 

Let Y be an improvement and let 

A e c~0 . Then because Y is CM 

and A Cartier there is an exact sequence: 

(3.3.6) The Canonical Cycle. 

0 0 

or: wA = wy(A) ® <DA ("Adjunction formula") 

(c.f (2.4.4)) 

From this we get by taking degrees: 

... ,.,. ... 
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deg (wA) = deg (wy 0 VA)+ deg(vy(A) ® VA) 

= deg (wy ®VA)+ A2 

Now because wA is dualizing: x(wA) = -x(vA) so deg(wA) = -2.x(vA) 
Hence: 

(3.3.7) 

(3.3.8) 

support 

Now let 

(3.3.9) 

Notation: 

s;; E. Put: 

G w H ~ 
G C H ~ 

Let Y be an improvement, G and H two 

divisors on Y, not neccesarily with 

if G.A = H.A for all A E Wy 

if G.B = H.B for all BE Cy 

Kx'° be a canonical divisor on 1 I so w1 ~ v1(K1). 

Proposition: Let Y be a Cartier model. Then there 

exists a unique cycle Ly e Cy ®©such 

that for all A e c~0 the following holds: 

deg(wy@ vA) = LA.A 

Define a © - divisor P on 1 by: 

p : = LseS 2. ( a ( s) - 1 ) . a ( s) 
a(s) 

Then one has: 

2 proof By (3.3.7) deg(wy ® vA) = 2.x(vA) - A . By the usual 

adjunction formula on 1 one has: 

K1 .Ä = -2.x(vÄ) - Ä2 . So by (3.2.5) we get: 

deg(wy ®VA)= K1.Ä + 2.rA 

As Ais Cartier we can write A = I:seS X(s).F(s) + other terms 

(c.f.(3.2.14)). Now use (3.2.6) to find: 

deg(wy ®VA)= (K1 + P).Ä 

with Pas above. As the intersection pairing on 1 is non

degenerate one can find a unique Ly with the stated properties 
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(3.3.10) Remark In general we do not have for A e w~ 0 
y 

This deg is non-linear in A and is given by a more complicated 

formula (which will not be our concern here). There is however 

one notable special case: the case that Y is Gorenstein. By 

(1.3.7) this only happens when Y has only A and D singularities. 
00 00 

Let Ky be a canonical divisor on Y, i.e wy ~ @y(Ky)- Then we can 
>O 

write deg(wy ® @A) = deg(@(Ky) ® @A) = Ky.A for all A e Wy But 

note that we can choose such a Ky with support in E only if Xis 

Gorenstein. 

(3.3.11) Proposition Let Y be Gorenstein improvement. Then 

there exists a unigue My e Wy ® © such 

that for all A e W~O the following holds: y 

One then has: 

proof This is clear. • 

We defined My only for Y Gorenstein. For general Y we define My by 

(3.3.12) 

but it is not clear what it means. 

What is the relation between Ly and My (for Y Gorenstein)? We have 

for all s es a(s) = 2 , so the divisor P of (3.3.9) is 6. 
So by (3.3.9) and (3.3.11) 

C w ~ ~ 
hence Ly and My are Cartier equivalent, but they are different in 

general. 



(3.3.13) 

Then 

Example: Let Y have an improvement graph that as 
shown below: 

Ly = -(1/S)(E + F) (2/5).G 

My= -(l/2)(F + G) 

(3.3.14) Only in the case that Y is an improvement of 

an X that is Gorenstein we can be sure that 

the cycles Ly and My coincide.Then we can find a canonical divisor 

Ky with support in E so in that case: 

Remark 

(3.3.15) Names 

Note the following 

(3.3.16) 

Ly.A = 

My-A = 

Ly is called the weakly canonical cycle. 

My is called the canonical cycle. 

formula's 

-2.X(<OA) A2 { A e c~o> 

-2.x(<OA) A 2 - ll.A ( A e W~O) 

The cycle Ly and My have the following positivity property: 

(3.3.17) Lemma: Let Y be a weakly minimal improvement. 

Then: 

for all Ce c~0 
y 

for all W e w~0 

proof: We only have to check to first statement for 

indecomposable Cartier divisors. There are two types of 

them (3.2.14); 
1) The fundamental Cartier divisors F(s) at the special points. 

2) The irreducible curves not intersecting ä. 

For those of the second type the statement is well known and 



follows immediately from (3.3.16). For those of the first type we 

can use (3.3.16), (3.2.4) and (3.2.6) to get: 
(3.3.18) 

Ly.F(s) = (a(s)-2) ~ O 

For My similarly. • 

(3.3.19) Remark The possibilities for zero intersection are: 

A. Cis a (-2)-curve not intersecting A or 

Cis fundamental Cartier at A or D point. 
00 00 

B. My. W = 0 <=> W is a (-2)-curve not intersecting A or 

W is a (-1)-curve intersecting A once (type 1). 

(3.3.20) Corollary If Y is a weakly minimal improvement, then: 

Ly ~ 0 

My~ 0 

proof + - + 
Write Ly = Ly - Ly with Ly, 

Then Ly.L; = (L;)
2 

have Ly.L; < 0, contradicting 

Similarly for My 

+ - + 
Ly.Ly If Ly f O then we would 

(3.3.17). 

• 

(3.3.21) Corollary If Y is a weakly minimal improvement, then: 

A. supp(Ly) is a union of connected components of E. 

B. supp(My) is a union of connected components oft 

proof: If supp(Ly) would not be the union of connected 

components of E, then one could find an indecomposable 

Cartier divisor C ~ supp(Ly), but intersecting Ly, negatively by 

(3.3.20) and contradicting (3.3.17). 

Similarly for My 

Now we have to figure out how the components look like on which 

Ly or My have empty support. 

First consider the connected components disjoint from A. 
If Ly or My has no support on such a component, it cointains by 

(3.3.19) only (-2)-curves and it is well known that then this 
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component is the minimal resolution of a rational double point 

(RDP). 

Assume that we now have a component of 1 on which My does not have 

support and which intersects 6 . By (3.3.19) a curve through a 

component of I has tobe a (-1)-curve, say A. There cannot be 

another (-1)-curve intersecting A, by negative definiteness of the 

intersection form. So only (-2)-curves can intersect A. There can

not be more than one, because otherwise we could blow down A, 

which brings us in the preceding situation. So there is at most 

one (-2)-curve intersecting A, and blowing down A makes this (-2) 

into a {-1)-curve so we can repeat. 

conclusion: A component of 1 on which My does not have support, 

can be blown down to a smooth germ (or to an RDP). 

Similarly for Ly: A component of Y on which Ly does not have 

support, can be blown down to A or D (or to an RDP). 
00 00 

We summarize the above discussion into: 

(3.3.22) Theorem Let X be an AWN surface germ and let 

y X a Cartier improvement which is 

weakly minimal. 

Letz be a connected component of Y and F its exceptional set. 

Then: Lz = Lylz ~ o 
supp(Lz) = F, except when Lz = O, in which case Z can be 

blown down to an RDP ,A or D 
00 00 

Let~ be a connected component of 1 and r its exceptional set. 

Then: M~ = ~yl~ ~ 0 
supp(M~) = r, except when M~ = 0, in which case ~ can be 

blown down to an RDP or a smooth germ. 

(3.3.23) Remark This theorem will be used in § 4.3. 

The statement for isolated singularities is 

originally due to M. Reid. (We followed the arguments in [Do] .) 



§ 3.4 The Fundamental Cycle 

Consider a resolution Y __ _., X of anormal surface 

singularity. Put 2 = { z e w;0 , z.w ~ o, v w e wi0 J. 
This set is non-empty by negative definiteness of the intersection 

form and is easily seen tobe closed under "inf", so it has a 

unique minimal element Z, called the fundamental cycle of the 

resolution. It was introduced by Artin [Art] to study rational 

singularities, but was implicitly used by Du Val in [DuV]. This 

cycle has a number of remarkable properties. We mention a few: 

1) 

2) If p : 

z. the 
1 

p*Zl = 

yl 
fundamental 

* 
ZO p ZO = I 

(Connectedness) 

YO is a modification, 

cycle of Y. I i=O,l, then: 
1 

Zl (Stability) 

3) fflx-Vy s Vy(-Z) and Mult(X,p) ~ - z2 (Maximal ideal) 

On an improvement of a weakly normal surface one has tobe careful 

with the distinction between Weiland Cartier divisors. There are 

several 'natural' possible definitions of the fundamental cycle, 

which turn out tobe different in general and do not have the 

above properties and so lose the right tobe called 'fundamental'. 

However, after one has introduced sufficiently long elementary 

chains (see (3.2.20)), all reasonable definitions agree and give a 

cycle with good properties. 

(3.4.1) Roots. We fix a Cartier model Y (see(3.2.14). 

Definition: A cycle Re c;0 is called a root if and only if: 

ho(vR) := dim H
0

(vR) = 1 

A root R is called rational if X (vR) = 1 or, hl(vR) = 0 I 

elliptic if X (VR) = 0 or, hl(vR) = 1, etc. I 

., "'"' 



(3.4.2) Remark: The notion of root on a resolution appears in 

[Wah 2]. On the minimal resolution of an RDP 
these cycles correspond exactly to the positive roots of the 

associated root system. In any case, there are only finitely many 

roots, due to the negative definiteness of the intersection form 

on Cy (h0
(vR) = 1 • x(vR) s 1 • R.(R + Ly) ~ -2). 

In general, not every Weil divisor is contained in a root; it may 

even happen that the set of roots is empty, for example for: 

2. 
In order to overcome this difficulty, we perform. on our Cartier 

model Y the transformation ij(s} at all the special points s e S. 

Around such a special point the improvement graph then contains 

the following curves: 

(3.4.3) 

--------··-·-------- ---·---------------- ---

----------. . •- __ _. . .__ .... _____ _ . . . 
------····· . . . . ... • • . . . 

• 
• 

TI(s) 
-------------------r---. • • --.. • .._ ____ ...,__~•--- • • • e O•---t 

We label the curves according to the following scheme: 

F ( 1 ) 
0 

F( 1 > 
1 

F< 1 > 
2 

. . 
F( 2) 

0 
F < 2) 

1 
F( 2) 

2 

. . 

. . . 

. . . 

. . . 

F ( 1 ) 
a(l)-1 

F ( 2) 
a(2)-l 

FC k > 
a(k)-1 

F ( l> 
a(l) 

F < 2) 
a (2) 



(3.4.4) We now introduce for every special point s es a certain 

Cartier divisor R(s): 

R(s) : = I:k < s ) ""a < i • s ) j . F~ i) ( s) 
i=l "-'j=l J 

Note the following relations: 

R.Fii) 

R.F~i) 
J 
( i) 

R.Fa<i) 

R.R 

= 
= 
= 
= 

1 

0 

-1 

-a 

(j = 

(we suppressed the dependence on s) 

1,2, ... ,a(i) -

(3.4.5) Lemma : For s e s , R(s) is a rational 

1) 

root. 

The set of indecomposable roots in c>O 
y 

consists of: 

1) The special roots R(s) I s e s 
2) The irredicible curves E. , not intersecting !). • 

J. 

Proof: By (3.3.18) F(s).Ly = a(s) - 2, where F(s) is the 

'fundamental' Cartier divisor at the point s. By the 

definition of R(s) we have R(s) = F(s) + {-2)-curves. As 

Ly. (-2)-curve = 0: R(s).Ly = a(s) - 2 . Using (3.3.16) we find 

x(vR(s)) = 1. A neighbourhood of R(s) can be blown down to a 

partition singularity, which is weakly rational ((2.3.7),(2.5.1)) 

from which it follows that h 1 (vR(s)) = 0 (c.f.(4.1.3)). Hence, 

R(s) is a rational root. It can be checked tobe indecomposable. 

The curves under 2) are clearly indecomposable roots. 

A root model Z is an improvement 

obtained from a Cartier model Y by 

performing at all special points s e S of Y the transformation 

(3.4.6) Definition 

n(s) of (3.2.17) 

We call n := TT n(s) : Z Y the root modification. 

(Starting with a Cartier model is not really necessary, but 

convenient.) 

• 

Root models have, by (3.4.5), the convenient property that their 

exceptional set Eis covered by the supports of the indecomposable 

roots. 

.. ,...,.. 



(3.4.7) Definition: The root Iattice is the lattice Ry spanned 

by the indecomposable roots. So we have: 

R-_ := e
5 

sZ.R(s) e e 2.E. 1 E. n ~ = ~ --y e - 1 1 

Remark that as groups we have: Ry = Cy I but their positive cones 

R~~ and c~0 are different in general. One has ~Os c~0 . 

The root graph is the graph obtained via 

usual rules by taking as set of vertices 

the indecomposable roots. A special root R(s) counts as a smooth 

~l with self intersection -a(s). On a root model as we have 

defined above we have that the root graph is connected precisely 

when Y is. 

It is very enlightening to look at the root graph of a root model 

Y. Starting from the improvement graph of Y its associated root 

graph is obtained by performing the following pictural 

transformation: 
--------------------------------------

• • • • • • • •• 

• • • -•--o 

'Root 
Gra.ph 

TI(s) 

--------------

B-" 

--~-

1 

~~''-~ 



Perforrning an elernentary transforrnation has, on the level of the 

associated root graph the effect of the addition of a (-2)-curve: 

ElerneV'!ta..r'1 
Tri:t..nStormA..tiorJ 

--1 G~::h 11---~> -• -•-•--1-• 
These associated root graphs can be considered as the 

resolution graphs of isolated singularities. The elernentary 

transformations produce in this way a series of (resolution 

graphs of) isolated singularities. We conjecture that these graphs 

are resolution graphs of singularities into which the original 

singularity X deforms. (see (3.4.33) for a more precise 
staternent). Theorem (1.3.10) can be considered as an explicit 

verification of this conjecture for partition singularities. 

In any case, the root graph explains why 'formal arguments' about 

resolutions of normal surface singularities often carry over 

verbatim to improvements of WNCM surfaces, as soon as they can be 

expressed in terms of roots. This is our main motivation for the 

introduction of roots in this context. 

(3.4.8) For an improvement Y we 

2w = A e CiO 

2c = { A e CiO 

2R = { A e C~O 

introduce 

A.WiO s; 

A.CiO s 

A.~o s 

the following sets: 

0 

0 } 

0 } 

To avoid some trouble with supports of cycles, we assume from now 

on that Y is connected. (c.f. (3.3.22).) 

Clearly one has 2w s 2c s ZR, and all elements of ZR have full 

support. Further, these sets are closed under 'inf' , and we 



define Z* := inf :;t*, * = W, C, R. ( inf ~ := oo ). Hence: 

ZW ~ ZC ~ ZR 

The set :itw can very well be empty, but by negative definiteness of 
the intersection form on Cy the set :;tc is non-empty. 

(3.4.9) Example: A. Take the following improvement graph: 

-- ------------------ ---
;'it = ß w 
Coefficients of ZR: 

-3 1 2 
3 

4 3 

A root model is 

-3 
1 1 1 1 

4 4 3 2 

B. But even on a root model one can have 

ZW # ZR -~~:_:_!_3. 4. 19)) . 
-----------------

(3.4.10) 

• 
-----

Question: Is it true that on a root model always 

:itw F ß? This would make life easier to 
deal with. 

We now analyse the conditions imposed on a Cartier cycle A for 

negative intersection with the curves of an elementary chain. 

So consider such a chain of length ß and label the curves in the 

usual way (see (3.2.20)). 
------~----·-------- . 

Fo F, Fi. 
• • • • • • • • • 



Write A = a0 .F0 + a 1 .F1 + ... + aß.Fß + terms not involving Fi 's. 

For A tobe in the set ZR, it is necessary that 

A.Fi ~ 0 for i = 0,1, ... ,ß-l 

This is equivalent to saying that the function 

a: {0,1, ... ,ß} [N i i 

is concave, i.e 2.ai ~ ai-l + ai+l , i = 1,2, ... ,ß-l. 

(3.4.11) Lemma: Consider the following set of functions: 

C(a,b) := {f:{0,1, ... ,a} [N 1 f is concave and f(a) = b} 

(This set is closed under 'inf') 

Put :F a,b = inf C(a,b) 

Then : 

{ 
(m+l) .n n ~ r 

Fa,b(n) = m.n + r n ~ r 

where b m.a + r; m e tN , 0 ~ r < a 

proof This is a nice exercise with a 'computation sequence -

heat equation' argument. 

Note in particular that if b = X.a, then F b(n) = X.n. a, 

(3.4.12) 

proof 

Lemma Let Y be a root model. Then 

R>O 
ZR C y 

Let A e ZR and concentrate on a special point s e S. 

Write A as: 

A = ~ k ~a ( i ) < i ) F <. i > 
'-'i=l '-'j=l aj . J 

+ t t . 1 . F(i) erms no 1nvo v1ng j 

• 

(see (3.4.3)). As Ais Cartier at s 

As A e ZR, the functions: 

( i ) 
a . = X.a(i) for some X~ 0 

J 

a (i) : { 0, 1, ... , a ( i ) } [N j 
(i ) 

a j 

( i) 
are all conc .. ave. From lemma (3.4.11) it follows that aj ~ Lj . 

Hence we can write Aas a positive linear combination of roots, 

i.e. A e R; 

,,~ 

• 



(3.4.13) Corollary 

In particular1 ZR is the 

graph. 

If Y is a root model 1 then 
> 

zw I zc I zR e Ry 

fundamental cycle of the associated root 

(3.4.14) This notion was introduced by 

Laufer in [Lau 2]. It is not 

only a convenient way to compute the fundamental cycle 1 but also 

Computation sequences 

useful for theoretical arguments. 

Consider a chain of cycles z
0 1 z

1 1 ••• 1 Zk 1 ••• of the following 

type: 

with 

Here ert denotes the set of irreducible Weil divisors 1 :R. the set of 

indecomposable roots and :R.(W) the smallest root having a support 

containing Weer,. 

We say that the chain stops at Zk I if it cannot be extended over 

zk . Clearly if i t stops at Zk1 then zk e 2w . 

Let us show that in that case Zk = Zw. This is a well known 

argument 1 but let us make sure it works in this more general 

situation. 

We are going to show by induction that Zj ~ ZW for all terms in the 

chain. For j=O this is clear1 because ZW has full support1 and is 

by ( 3. 4 .13) a positive sum of roots. So assume Zj-l ~ Zw . 

Write: 

I 

s e R~O not involving :R.(Wj) 

T e Rt0 not invol ving :R.(Wj) 

By assumption s ~ T I a ~ ß • Now (Zw - Zj_1 ) .Wj < 0 so we get: 

(T - S).Wj + (ß - a).:R.(Wj).Wj < 0. As (T - S).Wj ~ 0 and 

:R.(W.).W. < O (this is the crucial thing) one has a < ß so 
J J 

Z. = Z. 
1 

+ :R.(W.) ~ Zr.1 and we are done. Hence : 
J J - J n 

(3.4.15) Lemma Let Y be a root model. The above computation 

sequence (and then stops at Zw) iff 2w # ß. 

, , LI. 



(3.4.16) Remark There are similar computation sequences for 

the cycles for ZC and ZR. If one is not on 

a root model one can use the Cartier hull (3.2.15) instead of the 

root hull .:R.(W). 

An application of computation sequences is the following 

( c . f. [ Art ] ) 

(3.4.17) Proposition Let Y be a root model and ZR be the 

fundamental cycle with respect to roots 

Then: ho(Oz) = 1 (i.e. ZR is a root) 
R 

proof : Let z 0 , z 1 , ... , Zk = ZR be a computation sequence for 

ZR. Look at the short exact sequence: 

0 Oz. 
1 

(D 
z. 1 1-

Now Oz_(-Zi_1) ~ oR(-R.Zi_1 ) , where R = zi - zi-l . 
1 

As z0 , z 1 , ... , is a computation seguence : R. Zi-l > 0 . A 

negative bundle over a root cannot have sections, so we get: 

and by induction the statement follows. 

0 

(3.4.18) Stability Let e : Y1 ----+ Y0 be an elementary 

transformation at a special point s e S 

of a root model Y0 . We can compute the cycles 
* z 0 = ZR(Y0). We have the induced maps e* and e 

* 

zl = ZR ( Y l ) and 

of (3.2.13) and we 

can ask for the relation between e z 0 and z
1 

or e*Zl and z 0 . For 
* a resolution i t is known that e z0 = z 1 ; e*Zl = z0 , i. e. the 

fundamental cycle is "stable" under blowing up and down 

• 

(see [Wag]). For our cycles Zw, Zc, ZR this is unfortunately not 

the case in general. (Remember, the elementary transformations 

correspond to the introduction of a (-2)-curve in the associated 

graph, and not to a blow up). 

, c:: 



(3.4.19) Example Take the improvement graph of example 

(3.4.9) B. and blow up in the short arm: 

----- - -- ---~---- -~ - -~ ---- -~- -- ~ 

,.__o ••--1•..,__-o 

-4 -4 

The coefficients of ZW and ZR look like: 

2 3 2 3 3 1 2 

1 2 3 3 3 3 1 2 3 3 3 3 1 2 3 3 3 

1 1 1 

* 2w, 0 E 2w, 0 > z 
w~ 1 

1 2 1 2 2 1 2 

1 2 3 3 3 2 1 2 3 3 3 2 1 2 3 3 3 

1 1 1 

* 
ZR, 0 E ZR, 0 < ZR, 1 

So neither Zw nor ZR is stable and they exhibit opposite 

behaviour. After the blow up they have become egual!(and stable). 

To analyse stability it is most easy to use Zw. So take a model 
E Y0 on which Zw exists (see (3.4.27)) and let Y1 --- Y0 be an 

elementary modification. Put Z. = Zw(Y.) i = O , 1 • Let D the 
1 * . 1 

newly introduced curve, and let e A be the total, A the strict 
>o transform of A e Wy . 

0 * 
We use the formulas e A = A + (A.D) .D 

* * As E : Cy 
0 

necessarily 

Cy , we have e Z
0 

e 
1 

have e *zl e Cy 
0 

* - * * Now: E z0 • W i = E z0 . E W i = z0 • W i 

* e z
0
.n = o 

.... ,. 

* ; eA.D = 0. 

c>O. We don't 
yl 

3 

3 

3 

3 



Write: 

Then: 

* > 
E Z0 = z1 + P , P e C:y . 

2 * 2 2 l 2 
zo = ( & zo) = zl + 2. zl. P + P s; z21 as z P P2 < o 1. , - . 

So: IZ~I 2: 1zi1 with equality if and only if &*z0 = z1 . 

Write: z1 = z + a .D 

Then: 
* z (Z E E * z1 = + .D) .D 

} zl z a.D * (a-Z.D) .D = + 

} • zl = E &,.,Z1 + 

• a 2: Z.D 
2:0 z1.D 

Now: 

So: If &,.,Z1 is Cartier, then &,.,Z1 2: z0 • If this is the case then 

* * * & &,.,z1 2: & z0 2: z1 2: & &,.,z1 

(3.4.20) Resume 

* 
12~1 1zf1 

* 1) E z0 2: zl i 2: I = iff E z0 = z 1 
* 2) If &,.,Zl 2: zo I then E z0 zl and &,.,Z1 = zo 

3) 
>O 

if &,.,Zl is Cartier, then E*Zl &,.,Z1• Wy I so 2: zo 
0 

(3.4.21) Corollary (If ZW exists on Y then) after finitely 

many elementary transformations ZW 

becomes stable. 

We now give a criterion for the stability of Zw in terms of the 

lengths of the elementary chains (see (3.2.20). Assume Y0 is a 

root model on which Zw = z0 exists. Lets e S be a special point 

of Y
0 

and let X(s) be the coefficient of R(s) in z0. 

Let Y1 P Y0 a model dominating Y0 and let z1 = Zw(Y1) 

(3.4.22) Lemma: Lets' be the Special point of Y1 
corresponding tos on Y0 . If all elementary 

chains terminating at s' have length 2: X(s).Index, then 

z
1 

is stable under further elementary transformations at s. 

11 7 



proof * By ( 3. 4. 20) we have p z0 ~ z1 so X ( s) ~ X' ( s' ) , where 

X'(s') is the coefficient of the special root at s' in z
1

. 

Let {F0,F1,F2, •.• ,FßJ be an elementary chain on Y
1 

terminating at 

s'. By assumption: ß ~ X(s).a(i,s') ~ X'(s').a(i,s'). Writing the 

cycle z
1 

as: 

Z1 = a0 .F0 + a1 .F1 + ... + aß_1 .Fß-l + aß.Fß + other terms 

we see that by (3.4.11) that if ß >aß= X'(s 1 ).a(i,s') then 

aß-l = aß and by (3.4.20) 3) it then follows that z
1 

is stable 

under further elementary transformations at s'. • 

(3.4.23) Remark: 

operation n(s) at all 

(3.4.24) Lemma 

proof 

An Y
1 

as above can be obtained from y
0 

by 

performing successively X(s) times the 

special points. 

Let Y
1 

p Y0 be as in (3.4.22). 

Then ZR (Y1) = ZW(Yl). 

that the coefficient of the special roots in ZR~ X(s). 

Using (3.4.11) again, one can check that ZR.W ~ O for all w e w~0 , 

i.e ZR fulfils the conditions for Zw so ZR~ Zw 

(3.4.25) Fundamental cycle and Maximal ideal. 

One should not forget that the fundamental cycle is 

intended tobe a lattice theoretical and hence computable 

substitute for the maximal ideal mx of a surface singularity. 

• 

Let Y n X be an improvement of an AWN-surface germ X and 

1 

let mx = mx be the maximal ideal of the local ring Ox . We can ,p ,P 
pull back the functions in mx to Y, where they generate a sheaf 

which we denote by mx.Oy c Oy- Take a function f e mx and look at 

the divisor of n*f e a0cmx.Oy)- In general it will consist of a 
* non-compact part N and apart C with support on E : (n f) = N + C. 

Now assume that N n A = ~ Then Cis a Cartier divisor. Clearly 

we have O = (nf) .W. = C.W. + N.W. , hence C.W. ~ 0 for all 
1 1 1 1 

irreducible Weil divisors on Y and so C ~ Zw (andin particular 

the set Zw is non-empty). If mx.Oy is an invertible ideal at the 

, , 0 



special points s e S we certainly can find such an f, so 

(3.4.26) Lemma If 'mx-Oy is invertible at s, then: 

1) 2w i ~ , i.e. Zw exists. 

2) 'mx-Oy s Oy(-Zw> 

As tobe expected this need not be the case (apparently (3.4.9) A. 

is an example) To see this in an explicit example, we take the 

following 

(3.4.27) Example Take the singularity X with 

= ~{x4, 4 3 3} vX,p ~ y, x.y, x .y, x.y . 

This is a weakly rational quadruple point in c 5 • Its normalization 

is an A1 point and its (minimal) improvement has the following 
---··--· ·--· ------- ---~-. ---·---~·--~--

graph: 

2 2 

The d~'\7-~_so~~-of the functio_1:s __ i~-~X on Y look like: 
----~---------- --

l 

0 

4 y 

0 

2 1 

x.y 

1 - 3 

2.. 

1 I 

3 
X .y 

In local coordinates around the point s we have 

1. 

3 x.y 

2 2 4 2 2 3) h im v is not mx. oy, s = ( u. VI u , u V I u VI u V I ence mx. y 

, , 0 

1 

3 



invertible at s, and indeed fflx-Vy ~ vy(-Zw) = vy(-2.E) 

Blowing up once in the special points s gives a model on which 

fflx-Vy = Vy(-Zw) = Vy(- E - 2.F - 2.G) 

where F, Gare the newly introduced curves. 

(3.4.28) Definition An improvement Y n Xis called a 

stable model if and only if the 

following conditions are fulfiled: 

1) Y is a root model 

2) z = R ZW 
3) ZR is stable 

For such a stable model we simply write Z = ZR = Zw and call this 
cycle the fundamental cycle. 

(3.4.29) Theorem Let X be an AWN surface germ. Then there 

exists a stable model Y 

Let Z be its fundamental cycle. Then: 

n X for X. 

1) h
0 (vz> = 1 

2) Z is stable under all modifications. 

3) fflx-Vy s Vy(-Z} ; Mult(X,p) ~ -z2 

proof: First take a root model (3.4.6). Then make fflx-Vy 

invertible at the special points (3.4.26) so that Zw 

exists. Then perform, if necessary, further elementary 

transformations to make Zw stable and equal to ZR (3.4.22) , 

(3.4.24). The resulting model will then be a stable model. 

Now let an arbitrary stable model Y 

clear that its fundamental cycle Z fulfils 

2) (almost by definition). For 3) let Y' 

X be given. It is 

1) (by 3.4.17) and 
p Y be a model 

dominating Y wi th fflx-Vy, invertible around the special points and 

Z' its fundamental divisor. So fflx-Vy, s Vy1(-Z'). By stability we 
* have Z'= p Z, p*Z' = Z, so: 

* p ©y(-Z} = ©y, (-Z') ; 

Hence fflx. Vy • 

120 



(3.4.30) Remark We see that in any case by performing 

finitely many elementary transformations on 

a given improvement we end up with a stable model on which the 

fundamental cycle has formally the same properties as in the case 

of a resolution of anormal surface singularity. But the exact 

number of blow-ups needed is still very mysterious. If (3.4.10) 

has an affirmative answer, we would hav~ an explicit upper bound 

for this number. This is now lacking, because we used an unknown 

number of modifications to make mx.öy invertible at S to get the 

existence of Zw. Although this is not very satisfactory, we will 

not pursue this further, because for most applications the above 

results suffice. 

(3.4.31) Remark Sometimes it is convenient to blow up a 

stable model still further to what I would 

like to call a very stable model. On such a very stable model the 

coefficients of Z on the curves near the special points are 

constant on elementary chains of length equal to their index. So 

on the associated root graph the coefficients of Z are: --~ 
·------

t 

or multiples of this. 

(3.4.32) Associated rooi: graph and deformations. 

When we perform elementary transformations on a A
00 

or 

D singularity, and then look at the corresponding root graph we 
()() 

get the picture as in (3.4.7). Now A
00 

and D
00 

are usually 

considered as the "limits" of the series of isolated singularities 

A and D. So here the associated root graphs are precisely the 
n n 

resolution graphs of the series of isolated singularities into 

which the limit deforms. By theorem (1.3.12) the same is true for 

the other partition singularities. 

The following conjecture seems plausible: 



(3.4.33) Conjecture 

irnprovernent Y 

Let (X,I,p) be a (gerrn of a) 

WNCM-surface. Then there exists an 

X with the following property: 

Y dorninating Y For every root graph r a of rnodel Y' 
there exists a flat deforrnation F(r) : x S of X over a 
srnooth curve gerrn (S,O) with the following properties: 

1) -1 
The fibres Xt = F(r) (t) (t~O) have a single isolated point 

which have a resolution with resolution graph r. 

2) Pg(Xt) = pg(X). 

3) Mult(Xt,P) = Mult(X,p). 

One can also conjecture the existence of deforrnations between the 

Xt corresponding to different r according to inclusion of graphs. 

So every WNCM X should give rise to a (multi-) series of 

singularities, indexed by associated root graphs. 

At this rnornent of writing I cannot give a cornplete proof of this 

conjecture. But it should be possible to proceed as follows: 

1) Take an arbitrary irnprovernent Y X, and choose a 

cycle A that "carries the cohornology", i.e. a cycle A such 

that the natural restriction rnap R1~*~Y ---, H1 (~A) is an 

isornorphisrn. 

2) It is possible to develop a deforrnation theory of Y, fixing 

the subspace A, i.e. one can consider those deforrnations of 

Y inducing the trivial deforrnation on A. The resulting functor I 

call FixA. It has a tangent space ~ixi and an obstruction space 

~ixi. As deforrnations of this type are 'of local nature' , there 

are corresponding sheaves $ixi and $ixi, which have support on the 

set A. 

3) By [Siu] H2 (~) = 0 for every coherent sheaf on Y, so 

the 'local to global' spectral sequence reduces to the 

following :a. an exact sequence 

0 
1 

H ( 0y(-A}) 

where 0y(-A) is the sheaf of vectorfields, vanishing on A. 

1?? 
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b. an isomorphism 

4) As we already mentioned, the sheaves 9"ixÄ and 9"ix! are 

concentrated on ~- One can construct deformations of the 

neighbourhoods of the partition singularities that fix the part of 

A in that neighbourhood by choosing the Ni of theorem (1.3.12) 

sufficiently high. This gives an element of the group H0(9"ixl>- By 

the above exact sequence 3) a. this element can be lifted to an 

element of ~ixl, i.e we have found an infinitesimal deformation 

of Y, fixing A (with specific behaviour at the special points of 

Y). By 3) b. this element is not obstructed, because the global 

obstructions come from the local ones, and we started with local 

deformations that where unobstructed. This way we get a formal 

deformation ".V" ----,. spec (CC [ [ t]])) of Y. 

5) Problem: Can we do this convergent, so get a real space 

S over a curve germ? There should be a general 

theorem which garantees this. So assume for the moment we know 

that we have a real deformation :y IT s. By construction, 

this deformation of Y is trivial on A, and as A carries the 

cohomology, it follows that t ....,_ __ ~ H1 (vy) is constant, where 
t 

Yt is the fibre n- 1 (t). 

6) Now there is a general theorem of Riemenschneider [Ri] 

stating that in such a situation (H1 (vy) constant) we can 
blow down :y __ _..., S to a get a X __ _.,. S, which is a flat 

deformation of our original singularity X. 

What does a resolution of the general fibre look like? Well, 

first it is dominated by the deformed improvement. The local 

deformations were of such a type that we introduced isolated 

singularities at the special points. Resolving these just gives 

the associated root graph of a model Y' __ _,, X. It is now easy 

to see that Y' ---, X is an improvement having the properties 

of the improvement of the conjecture (where it was called Y). 

So at least formally the conjecture is true. (The multiplicity 

question can be handled.) I hope to settle this convergence 

question in the near future. 



CHAPTER 4 

APPLICATIONS 

In this last chapter we give some applications of the ideas and 

techniques developed in the foregoing chapters. The basic 

philosophy is: "Every formal argument about resolutions of normal 

surface singularities should have its counterpart for (stable) 

improvements of WNCM-surfaces". This makes an easy game: take a 

theorem about normal surface singularities, read carefully its 

proof and usually you will find an interesting theorem about WNCM

surfaces as well. Because we mainly have to harvest the crop sown 

by others, we do not give full proofs. 

§ 4.1 Weakly rational singularities 

Rational surface singularities have been studied thoroughly by 

many authors during the last decades. We mention Artin [Art], 

Brieskorn [Br], Tjurina [Tj], Lipman [Lip], Laufer [Lau 2] and 

Wahl [Wah 1]. We give a short overview of some results, stating 

their theorems in the more general context of weakly rational 

surfaces. 

(4.1.1) 

if: 

where Y 

Definition Let (X,I.p) be a WNCM-surface germ. Then 

Xis called weakly rational if and only 

1 
R 1TiDy = 0 

1T Xis any improvement. 

We refer to such singularities as WNR-surface germs. 

(4.1.2) Remark This is the same (for X CM) as (2.6.1). 

We will choose for X a small Stein 

representative and Y = 1r- 1 (X), so that H
1

(vy) = (R
1

1r*vY)p. 

>O 
Note that for any singularity and A e Wy one has a surjection: 



and from this: 

<=> v A e w?:. 0 
y 

In particular, for an improvement of a weakly rational X we can 

remark directly the following things: 

1) All irreducible components Ei of E are smooth rational 

curves. 

2) These components intersect transversally. 

3) The improvement graph is a tree. 

Artin's first remarkable theorem is that the weak rationality of a 

singularity can be decided by looking only to the improvement 

graph. It states that the fundamental cycle is big enough to 

detect H1 ( ({)Y) • 

(4.1.3) Theorem ([Art]) Let X be a WNCM-surface germ and 

Y ~ X be a stable 

improvement of X, Z its fundamental cycle. 

Then Xis weakly rational if and only if H1 (({)z) = O. 

(4.1.4) Remark As a 0 (oz) = 1, the condition H1 (({)z) = O is 

the same as X(({)z) = 1; as x's can be 

computed from the improvement graph, the WNR-condition is 

decidable. In fact one may work on a root model when one uses ZR. 

When one looks at a computation sequence for Z: 

ZJ. = Z . l + R. , Z. l . R. > 0 , RJ. e .:R. J- J J- J 

one sees x (({)z) = 1 <=> Zj-l. Rj = 1 for all steps in 

computation seguence. This is very convenient for actual 

computations.(This remark is due to Laufer [Lau 2].) 

We have seen that on a stable model one always has: 

'Jllx,({)Y s ({)y(-Z) 

the 

Artin's second theorem is that for weakly rational singularities 

one has equality. 

., ,,,,. 



(4.1.5) Theorem C[Artl~[Lip]) Let X be a WNR-surface germ 

and let Y n X be a 

stable improvement and Z its fundamental cycle. Then: 

(4.1.6) Corollary 

n 
mx-<Oy = vy(-n.Z) 

n n+l 0 mxlmx ~ H (v2 (-n.Z)) 

Fora WNR-surface germ one has: 

dim(m~;m~+l) = -n. z 2 + 1. 

From this we get: 

Embdim(X,p) dim(mx/m~) = - z
2 

+ 1 

Mult(X,p) = lim 
n• oo 

(4.1.7) Remark This theorem is certainly wrong when one does 

not go to a stable model (see examples 

(1.4.16) and (3.4.27)). This is one of our motivations for the 

introduction of stable models. 

The next theorem is due to Tjurina: 

(4.1.8) Theorem C[Tj]) Let X be a WNR-surface germ and let 

Y n X be a stable improvement. 

Let B(X) X be the blow up of X at the point p. Then B(X) 

is obtained from Y by blowing down all maximal connected graphs of 

curves Ei with Ei.z = O. 

Weakly rational surfaces can be improved 

by successively blowing up points. Here one 

has tobe a bit careful, because for isolated rational 

(4.1.9) Corollary 

singularities one uses induction on the number of curves in the 

minimal resolution. As minimal improvements are not stable in 

general, one cannot use this. But instead one can use induction to 

the number of curves on a weakly minimal improvement that do not 

occur in an elementary chain. So this is the analogue of the 

absolute isolatedness of rational singularities. J.Stevens told 

., ,.,'"1 



me, that from this result it follows that a general WNCM-surface 

germ X can be improved by blowing up points and "partial 

normalizations" . This is an analogue to the resolution process of 
Zariski we mentioned in (1.4.1). 

A lot can be said about the set of equations defining a weakly 

rational surface singularity X. We have seen that 

Embdim(X,p) = - z2 
+ 1 =: e, so X ---- ce. Let o = oce, 0 , 

<O = Grm(<O) and X= Specan(Grm(<Ox) be the tangent cone of X. 
The following theorem is due to J.Wahl: 

(4.1.10) Theorem ([WAH 1]) 

b e - 2 b2 
0 ----+ <!'.) 

~e-2 
. . . . <!'.) 

b e - 2 _b2 
0 -----+ <!'.) <!'.) 

tf> e - 2 

<Ox and <!'.)X have minimal free 

resolutions of the form: 

bl 

~2 • <!'.) 
~l • <!'.) -----+ <!'.)X ----+ 

_bl 
<!'.) <!'.) ----+ <!'.)- ----+ 

'1>2 tf> 1 
X 

0 

0 

such that 1) the second resolution is the graded complex of the 

first. 

2) tf> i is homogeneous of degree 1 (i>l) or 2 (i=l). 

3) b. 
1 

. ( e - 1 ) = 1 · i + 1 

A proof can be found in the beautyful paper [Wah 1]. 

An immediate corollary is: 

(4.1.11) Corollary The Gorenstein type of Xis 

type(X,p) = e-2 = - z2 - 1 . 

It should be clear by now that instead of looking for similarities 

between isolated rational and non-isolated weakly rational 

singularities, one should concentrate on the differences between 

them, in particular on the structure of the singular locus. 

But before doing so, we proof a theorem that was used in§ 2.5 

(2.5.10) 

., ")0 



(4.1.12) Theorem Let (X,p) (S,O) be a flat 

deformation of a reduced curve germ (C,p) 

over a smooth curve germ (S,O) (In other words, c is a general 

hyperplane section of X through p). Then 

(C,p) is weakly normal (i.e (C,p) ~ (L~,O) for some r) 

if and only if 

(X,p) is a weakly rational WNCM-germ, which has a reduced 

fundamental cycle on a stable weakly minimal improvement. 

proof: If (C,p) is weakly normal, then by {2.5.7) {X,p) is 

weakly rational and WNCM. Now choose a stable model 
~ Y __ _. X and let Z be its fundamental cycle. Let C be the 

strict transform of C on Y. We may assume that Cis disjoint from 

the special roots by 

If f E mx defines C, 

indecomposable roots 

performing elementary modifications. 
* -then we can write (~ f) = Z + C. So for all 

Re~ one has: Z.R = -C.R. As C consists by 

assumption of smooth branches, we must have: Z.R < O • Z reduced 

at R. Let T be the sum of all indecomposable roots, T = E Ri, 

R. e ~. We show that Z=T. Assume Z > T, then the computation 
1 

sequence has to terminate at a root R. with Z.R. = 0. But because 
1 1 

Xis weakly rational, remark {4.1.4) gives {Z-R.).R. = 1, so 
1 1 

R~ = -1. By weak minimality of Y, there cannot besuch roots, 
1 

hence Z = T. It is easy to see that the cycle T can only be the 

fundamental cycle if the partition singularities of Y are all of 

type~= (1,1, ... ,1) (local argument). Hence, the fundamental 

cycle, considered as a subspace of Y, is reduced. This proves half 

of the theorem. The converse is easy and follows for instance 

from: 

Let {X,p) be a weakly rational 

WNCM-surface germ. Let {C,p) be the 

germ of a general hyperplane section through p . Then: 

(4.1.13) Proposition 

ö{C,p) = Mult(X,p) - 1 

We omit the proof, which is not hard. 

So if c has r branches and Y has a reduced fundamental cycle, then 

Mult(X,p) = -z2 = z.c = r, so ö(C,p) = r - 1, which implies that C 

is a weakly normal curve germ (see (1.1.6)) • 



(4.1.14) Remark The proof of (4.1.11) was inspired by 

J.Stevens (see [Stev 1], exarnple (3.5)). 

The fact that for X as in (4.1.12) all branches of rare srnooth 

and that the rnap A __ _,.. ~ is unrarnified, has been used in 

(2.5.11). 

(4.1.15) What can be said about the singular locus r of a weakly 

rational surface gerrn X? 

By (2.3.5) and (2.3.6} the classification of weakly rational 

WNCM-surface gerrns is eguivalent to the classification of: 

1) Finite rnappings between curve gerrns r r such that 

a?p} (rDilrDr > 
N 

a. = 0 and b. c5 ( r ) = c5 ( r ) 
N N N 

2) Ernbeddings r X where Xis a rational surface 

singularity. 

Let US start with condition 1). The norrnalizations of r and r 
N 

are denoted by A and A respectively, as usual. We can consider 

rDr , rDi , ro 6 all as subrings of vA . In (1.2.22} the condition 

about the local cohornology was translated in: 

The condition c5(I) = c5(I) can then be translated into: 

This i~ because c5(I) = dirn(ro 6/ror> = dirn(ro 6/roinro 6 ) = dirn((roi+v 6 )/vi) 

and c5 ( r) = dirn ( ( ro i +ro 6 ) /v i) <=> ro i + ro 6 = v A 

From these two conditions already a lot can be said about r and r. 

(4.1.16) Proposition 

Then: 

Let r __ _,.. r be a rnap between curve 

(multi-) germs with the property that 

and 

,~n 



A. Any component of A maps to a smooth component of I, or maps 

with degree 1 to a component of I (or both). 

N 

B. If I is an irreducible singular curve, then I consists of a 

disjoint union of smooth branches L. , together with a copy 
N 1 

of the curve I: I = U L. U I . The map I ---... I is the 
1 

identity on the I component; the map L. ---... I is the 
1 

normalization map composed with a cyclic covering. 

C. If I = L~, then t is the disjoint union U L: All branches 

of I map with a certain degree to components of I. One can 

associate in a natural way an incidence graph to this situation, 

which has tobe a tree. 

D. If I is connected and all components map with degree > 1 to 

components of I, then I and I are weakly normal. 

We omit the proof, which is straightforward. 

(4.1.17) An irreducible curve I can be the 

singular locus of a weakly rational 

surface if and only if I can be embedded on a rational surface 

Corollary 

singularity. This follows from case B. of (4.1.16). 

(4.1.18) Corollary If Xis an irreducible WNR-surface germ, 

then its singular locus must be weakly normal, 

by case D. of (4.1.16). 

(4.1.19) Remark There are many cases not covered by 

(4.1.16). For example, the precise nature of 

the singular locus of the singularities as in (4.1.12) is unknown 

to me. 

(4.1.20) About condition 2), the embedding of curve germs Ion a. 
N 

rational surface germ XI do not have any general 

results. All I know is that not all curve germs can be embedded on 

a rational surface. In particular, by (4.1.17) not every 

irreducible I can occur as singular locus of WNR-germ X. 



(4.1.21) Remember the equality Mult(X,p) = Embdim(X,p) - 1 of 

(4.1.6) for a WNR-surface germ X. 

In general one has for a germ of an analytic space (X,p) the 
inequality: 

Mult(X,p) ~ Embdim(X,p) - dim(X,p) + 1 

as one sees by taking repeated hyperplane sections. So WNR-surface 

germs are of minimal multiplicity (analogous to varieties of 

minimal degree). 

Note the following trivial: 

(4.1.22) 

proof 

Lemma Let (X,E,p) be a WNCM-surface germ and let 

(C,p) be the germ of a general hyperplane 

section. Then: 

6(C,p) ~ Mult(E,p) 

If we move the hyperplane defing C slightly, it cuts X 

in a curve et having Mult(E,p) singular points. Now use 

the semicontinuity of the 6-invariant (2.1.7) • 

This has an amusing consequence: 

Let (X,E,p) be a WNR-surface germ. Then 

the embedding dimension of the singular 

curve Eis at least two less than that of X (and usually much more 

(4.1.23) Corollary: 

than two). 

proof: Embdim(X,p) = Mult(X,p) + 1 

Mult(X,p) = 6(C,p) + 1 

6(C,p) ~ Mult(E,p) 

Mult(E,p) ~ Embdim(E,p) 

by (4.1.6) 

by (4.1.13) 

by (4.1.22) 

by (4.1.21) 

(4.1.24) Weakly rational double and triple points. 

The classification of non-isolated weakly rational 

singularities can be reduced to the (harder) problem of the 

classification of the isolated rational ones. The reason is that 

• 



the associated root graphs belonging to a WNR-surface germ X have 

tobe graphs of rational singularities with the same multiplicity, 

because the fundamental cycle on a stable model is the fundamental 

cycle of the associated graph. So one can work backwards: 

a. Look for series in the lists of isolated rational 

singularities. 

b. Try to interpret such a graph as a root graph associated to an 

improvement graph by declaring certain vertices to correspond 

to special roots. The negative definiteness of the improvement 

graph imposes conditions for this tobe possible. 

c. This way we will get all improvement graphs of non-isolated 

weakly rational surfaces. 

A. Weakly rational double points 

The isolated ones were classified by DuVal [DuV]. 

It is the well-known A-D-E list: 
----~-----· ·------ --··-------------~-- .. "----~- ----

D n 

E6 

E7 

Ea 

• • • 

• • • 

• • I 
• • I 
• • I 

• • • • • • • • • 

• • • • • • ·< 
• • 

• • • 

• • • • 



a. It is clear that only A and D come in series. 
n n 

b. For An every_ ':7_:_:~~~--c~~ -~orrespond to a special root. 

·~·· ··· .. -·~·~-·~ .. 
For Dn only the two end points connected to the branch point 

can correspond to special_roots. 
--~----~~---~ ~----------·---

·• • • • 

c. These improvement graphs define A and D .Hence: 
00 00 

Classification of weakly rational double points (WRDP's) 

1) 

2) 

Isolated 

Non-isolated 

ADE (the RDP's). 

A and D 
00 00 

B. Weakly rational triple points 

The isolated rational triple points were classified by Artin 

in [Art]. The list is less well known. (x denotes a (-3)-curve.) 
·-·-·---·-·--· ·--··-···--···-······-·-·--- - ···---===== 

----·- -- -----------··- -

1. .... ···ß• . )(. 
-;---;- --;-·. ~~----

• 

2. ·• . • • • .. l(l • 

3, 

• 

• • • • • • r • • 
X 

4, • • . - ' . • • X , . • 

5, • • • • • --x .. 
I • 

---·------------

61 • • • • • --- )( se • I 

• • • • 

• • • • 

,, 

• • • • < 
• 

• • 



-- - -- -- - - - - - ---- ------------··------··--~- ------------
----- ------

7. ~~,--...... •-•r---~•t---•.,.._--· )(-..... •------r--•.-----•--+•---· • • I • • • X 

a. So we have six big series and three exceptional ones. 

b. For graph 1. there are essentially three ways to declare 

vertices to correspo!J:~ _!:c:> __ ~ecial root!:?_: _______________________ _ 

• • • • ----------
-------------------------------------------

1 • • • •-
------------- --• • • • 

• • 

• • l(A) • • • 
-----------~---- ~--

• • 

• • 
l(A„B) 1-~--

••--4·._..__.._~·- --tet---.. ... --x-•----•- • • • • ......_ ______ -r _______ >-------✓..-B ______ _./ 

A„ 
For graph 2. there are also three ways to assign special roots: 

------ -- -- ----------- - --- ---~ -------------------··------

2 • • 

2(A) -- ... 

-------------------=--===-----A~---
~ ' . . --x --tf:~-4-.... -_-_-... __ _A...:__· -.--.--.--: 

-------

* 2(A) • • 



For graph 3. there is only one way to assign special roots: 
. - ···-·-···--·······-·---············--····---···------

3 • • • • ... {V 
For graph 4. there are three ways to assign special roots: 

. ·- ·- ... - - - ·- ·- --··---····--·--... _ ... _ .........• _ .........•... _. ________ _ 
4 ~--;:--... --o-{}F= . . . --" -~ . 

4(A) • • -·~---~-1 ~. ··: .. : :-~~----·_-:.-=_··_-_· _·_;__--·--· -✓< 
A 

* • • • • ·--•--•--X---1•.,.__... -
4( A) '-------- _.,, ~---- • 

A 

For graphs 5. and 6. there is essentially one way to assign a 

special root: 

--·----·--
• .. ~ ... --x- • 1 • •· 

5 • 

----·--· -----------=====-·-=-
6 .. ···=o= ------- l ..:...-x • • • • 

c. The resulting singularities can be interpreted as follows: 

First there are the partition singularities: 

X(l,1,1) ~ l 



Secondly there is the group of singularities obtained by glueing a 

smooth component to an WRDP along a smooth curve. Below we give a 

table of the WRDP's, together with a parametric representation of 

the curve and the resulting improvement graph. 

WRDP equation curve improvement 

Aa+b+l x.y - z 
a+b (X a . ). b . ). ) l(A„B) 

A x.y (Xa. o. >.) l(A) 
00 

2 2 a rHa/2 ,X,O) 
2(A) D z - y(x - y ) a+2 (0, ).,±). ( a+l) / 2) 

(0, ). , 0) 4(A) 

D 2 2 (0, ). , 0) 4 z - y.x 
00 

E6 
2 + y3 4 (X, 0,±). 2 ) 5 z - X 

E7 
2 - y(x 3 z 2 - y ) (X, 0, 0) 6 

Thirdly, there are two other series, not of the above types: 
* 2(A) Here X consists of two components. There is a smooth 

2 2a+l component, containing a curve with equation y = x , 

which is the singular locus. The other component is not 

Cohen-Macaulay. Its normalization is smooth and is glued to the 

first component via the normalization mapping of the curve. 

Examile (1.1.16) is of this type. 

4(A) Xis obtained by taking a standard line (x = 0, z = 0) 

an A singularity (x.y = za+l) and glueing this 2:1 to 
a 

on 

itself. 

(4.1.25) Tjurina [Tj] has given equations for the 

rational triple points in the form of 

2x2-minors of a 2x3-matrix. Of course, the equations for the 

non-isolated weakly rational triple points are obtained by setting 

Remark 

certain terms of the entries of these matrices equal to zero. 

Alternatively, one can use the above geometrical description in 

combination with (1.2.9) to find equations. 
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§ 4.2 Minimally Elliptic Singularities 

After treating the 

with the case p 
g 

singularities with pg = 0, should one proceed 

1? In some sense yes, but unfortunately the 

cannot be read off from the resolution or condition p = 1 g 
improvement graph. Example (2.3.8) is an illustration of this 

phenomenon: a singularity with p = 1 and one with p = 2 and 
g g 

having the same improvement graph. But note that in this example 

the one with p = 1 is not Gorenstein. Laufer [Lau 3] discovered g 
that the condition: 

and (X,p) is Gorenstein" 

can be effectively read off from the resolution graph. It turns 

out that this is also the case for WNCM-surfaces. 

(4.2.1) Definition Let Y X be an improvement of a 

WNCM-surface germ (X,t,p). 

A cycle A e c;0 
is called elliptic if and only if x(vA) = 0. 

It is called minimally elliptic if it is elliptic and for all 

0 < B < A one has X(VB) > 0. 

(4.2.2) Theorem ([Lau 3]) Let Y X be a weakly 

minimal stable model for X. Let Z 

be its fundamental cycle. Then the following conditions are 

equivalent: 

1) 
2) 

3) 

Z is a minimally elliptic cycle. 

For all A e Cy one has A.Z = - A.Ly where Ly is the cycle 

of (3.3.8) 
-1 x(vz) = 0 and every proper subvariety of E = ~ (p) is the 

exceptional set of a weakly rational singularity. 

The proof in the case of isolated singularities involves only 

formal manipulations with cycles and so continues to hold in this 

more general context. 

(4.2.3) Definition A singularity that fulfils one of the 

above equivalent conditions is called 

minimally elliptic. 



(4.2.4) Corollary The associated root graphs of a 

non-isolated minimally elliptic 

singularity are resolution graphs of isolated minimally elliptics. 

So one can start classifying using the lists of isolated minimally 

elliptic singularities, as given by Laufer [Lau 3]. This works in 

very much the same way as we did in§ 4.1 with the rational 

singularities. 

(4.2.5) Theorem A WNCM-germ (X,E,p) is minimally elliptic 

if and only if 

and (X,p) is Gorenstein 

proof See [Lau 3], thm. 3.10 . By now the reader should be 

able to make the appropriate substitutions him or 

herself. But let us show "minimally elliptic • Gorenstein". 

Let Y --~ X be a weakly minimal stable model and Z its 

fundamental divisor. Look at the adjunction seguence (3.3.6) 

0 --~ Wy --~ Wy(Z) --- Wz 0 

By Grauert-Riemenschneider (2.4.5) we get a surjection 

As Z was by assumption an elliptic cycle, x(v2 ) = 1, so h 1 (v 2 ) = 1 

and by duality ho(wz) = 1. Let n e a0 (wy(Z)) be an element not 

mapping to zero by the above surjection. The divisor of n can be 

written in the form (n) = - Z + C + N where C has support on E and 

is ~ O and N is non-compact ~ 0. If C > 0, then n can be 

considered as a section in a0 (wy(Z-C)). But then we can forma 

commutative sguare: 

0 H (wy(Z-C)) 

0 l O l 
H (wy(Z)) --- H (w 2 ) 

and by minimal ellipticity a0 (wz-c> = O, so we conclude that C = O. 

Using (4.2.2) 2) one then can show that N = 0. Hence we have 

constructed a dualizing differential non X - {pJ ~ Y - E, which 

is nowhere vanishing, so Xis Gorenstein. (We have omitted some 

details.) • 

1~Q 



(4.2.6) Corollary On an improvement of a minimally elliptic 

singularity we only find the partition 

singularities A and D 
00 00 

We conclude this brief detour into the minimally elliptic 

singularities by describing the structure of the non-isolated 

double and triple points. 

The minimally elliptic double and triple points are hypersurfaces 

in ~ 3 . They can be divided in five groups. 

Group 1. The degenerate cusps 

This is a preferred class of singularities all 

appearing as deformations of T , the ordinary triple point. 
00,00,00 

Their improvement graph is a cycle (Z is reduced) (see § 4.3). 

We note that the general hyperplane section (through the singular 

point) of a WRDP of type D and Eisa cusp (A2 ), so has 6 = 1. 

This gives us two different ways to make a singularity with Pg = 1 

out of them: 

Group 2: A*DE 

Here we take the WRDP of type D or E and form the union 

with its general hyperplane. For these singularities we have an A 
00 

on the improvement. 

Group 3: D*DE 

Here we take the WRDP of type D or E and use the 2:1 

map of the cusp to the line to glue. For these singularities we 

have a D on the improvement. 
00 

(When we do a similar operation on a WRDP of type A we end up with 

a degenerate cusp.) 

On certain rational triple points there are also curves with an A2 
singularity. These give in a similar way rise to: 

Group 4: D*DE* 

Group 5. The pyramid 

This is a group of eight singularities. They appear as 

the limits of the series of singularities U, S, W, Q, Z and J with 

p = 1 from the list of Arnol'd (see [Arn 1)). 
g 



We give a table of equations and improvement graphs for these 

singularities. (We only list the 'absolute limits' .) 

Name 

T 
00,00,00 

T 2 ,oo,oo 

J 2 / 00 

A*D 
00 

A*E 6 

A*E 7 

A*E 8 

D*D 
00 

D*E 6 

D*E 7 

D*E 8 

Equation 

x.y.z 

2 3 2 2 
Z + y + X .y 

2 3 5 z.y + z.x + z 

2 3 4 z.y + z.x + Z .X 

z.y 2 + z.x 3 + z6 

Z
2 6 2 3 + y + y .X 

2 5 2 3 z + y .x + y .x 
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Improvement graph 

----
1 1 

.~ 

,,------

--~------------

-3 ~ 

r 0 1 ~ 
-3 .. 

' 

· -0,.._........_. 
--- ., 

-:, ' 

,rO 
-· --+-• -1~· -·-•-1-+-• -~--3 

-------------------

---------·-·--·---

0~·----· -i~·--· _ _. 

-· ·--1-------· -· --· ......-. © 



Name 

* D*D 
00 

* D*E 
6 

* D*E 
7 

J 3 , 00 

z 1 , 00 

w 
1 I 00 

s 1 , 00 

w#: 
1 , 00 

u 1 , 00 

Equation 

2 + 2 + 2 x2 Z .X Z .y y. 

2 5 2 2 Z .X+ y + y .X 

2 3 2 2 Z .X+ y + y .X 

z2 + z. y2 3 + z.x 

2 2 3 z .x + z.y + z.x 

3 + z.x 
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Improvement graph 
... 

0-c0 
' 

2 
-··----------------

©1---·--·-r~•t--<1•~~ ~ 

l-0 

-;t© 
-------
-.3t-© i 2. 

I :._ 

-3 

]-0 
---------

---------

-'3~-3 
1 1 

. ·. -3 



§ 4.3 Gorenstein Du Bois surface singularities 

Every space has attached to it its filtered de Rham complex 

(~x,F·), which plays from a Hodge theoretical point of view the 

same role as the ordinary de Rham complex on a smooth space (see 

[Stee 2], [Stee 3], [DuB]). The space Xis called Du Bois at p e X 

or (X,p) is a Du Bois singularity if and only if 

(4.3.1) 

Such Du Bois singularities were studied in [Stee 2] and recently 

by Ishii in [I 1] and [I 2]. 

In this paragraph we are going to find all Gorenstein surface 

germs (X,p) which have this Du Bois property. 

(4.3.2) Lemma If (X,p) is Du Bois, then it is weakly normal. 

Let (X,p) be a WNCM-surface singularity and 

let (Y,E) TI (X,p) be a good improvement of (X,p). Then 

(X,p) is Du Bois if and only if the restriction map 

is an isomorphism. 

proof For the first statement see [Stee 5]. The second 

statement follows from [I 1], prop 1.4, and is due to 

the fact that the complex (~X 1 F) has a glueing property. 

Define wy(E) := Yeem(d,Wy), where d is the ideal sheaf of Ein Y. 

This sheaf sits in an exact sequence: 

0 0 

• 

(see § 2.4). But note that even if Y is Gorenstein (only A
00 

and D
00 

points on Y) the sheaf wy(E) is not locally free at the points 

where Eis not Cartier. On a general point of E however it 

coincides with the sheaf of two-forms on Y with a simple pole 

along E and it is the unique reflexive sheaf with this property. 

We now give a dual version of the Du Bois property which gives a 

bound on the pole order of dualizing differentials on Y-E. 



(4.3.3) Let (Y,E) ---. (X,p) be a good improvement 

of a WNCM-surface germ. Then (X,p) is Du Bois 
if and only if the natural map 

Lemma 

is an isomorphism. 

proof (c.f. [I 2], thm. 1.8) By Grauert-Riemenschneider 

(2.4.5) we have that 

0 0 0 
H (wy(E))/H (wy) ~ H (wE) 

Duality isomorphism on E: HO(wE)* = H1 (vE) 

By the Du Bois property: H1 (vy) ~ H1 (vE) 

1 * 1 Duality isomorphism on Y: H (Vy) = HE(wy) 

So the result follows by using Grauert-Riemenschneider again. • 

(4.3.4) Corollary Let (Y,E) 1T (X,p) be a good 

improvement of a Gorenstein Du Bois 

surface germ. Let Ky be the canonical cycle as in (3.3.14). Then 

one has: 

Ky ?: -E 

By (3.3.22) we know that on a weakly minimal model Ky has full 

support (Xis CM, so Y is connected) or is zero. From this it 

follows that there are two possibilities: 

A) 

B) 

• 
• 

X is an R.D.P, 

Eis Cartier • 
A or D (so Xis a WRDP). 

00 00 

Y contains no D points. 
00 

In case B) one deduces: 

sequence for Ewe get: 

Wy = Vy(-E) so by the usual adjunction 

Let E be a reduced curve with at most ordinary 

double points as singularities and with the 

property that wE ~ vE. Then one has the following possibilities 

(4.3.5) Lemma 

for E: 
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1) 

2) 

Eisa smooth elliptic curve. 

Eisa cycle of rational curves.(E = U.r1E. 
1 = 1 

smooth rational curves. r=l is allowed.) 

proof: Well-known, see [Do]. 

E. 
1 

With the help of the above lemma we find the a priori 

possibilities for the exeptional sets of Gorenstein Du Bois 

singularities. Any improvement Y which has as exceptional divisor 

a curve E as in (4.3.4) defines a minimally elliptic singularity 

(with reduced fundamental cycle), by (4.2.2). Hence it has p = 1 g 
and so it is Du Bois. We can conclude: 

(4.3.6) Theorem 

possibilities: 

1) Pg(X,p) = 0 

2) Pg(X,p) 1 

In other words: 

Let (X,p) be a Gorenstein Du Bois surface 

germ. Then one has the following 

<=> X is a WRDP 

<=> X is minimally elliptic wi th reduced 

fundamental cycle 

A) p isolated singular point 

Then Xis one of the following: * RDP 

* Simple elliptic 

* Cusp singularity 

B) p non-isolated singular point 

Then Xis one of the following: * A , D 
00 00 

* Degenerate cusp 

(4.3.7) Remark Part A of (4.3.5) is contained in [Stee 3]. 

In the same article, part Bis posed as a 

question of N. Shepherd Barren. For the definition and some 

properties of degenerate cusps see [Sh]. 

• 



§ 4.4 The First Betti Number of a Smoothing 

The following result is due to Greuel & Steenbrink: 

(4.4.1) Theorem Let X 

isolated 
-1 

Xt= f (t), t#O, be its Milnor 

f 
S be a smoothing of anormal 

singularity X = f- 1 (0). Let 

fibre. Then: 

b1(Xt) := dim<CH1 (Xt,<C) = O 

Fora proof see [G-S]. 

When one looks for a similar simple statement for non-isolated 

singularities one runs soon into big trouble. By taking the cone 

over Zariski's plane sextic with six cusps, we get a surface in <e 3 . 

The first Betti number of the Milnor fibre of this surface (which 

thus appears as a six-fold cover of the complement of the curve) 

depends on the position of the cusps: when they are on a conic, 

then b
1

(Xt) = 2, when they are not, then b
1

(Xt) = 0. (see [Es]). 

This shows that b
1 

is a subtle invariant. 

The cone over a curve r c ~
2 is weakly normal precisely when r 

has only ordinary double points. In that case the first Betti 

number is independent of the exact position of the double points: 

one has b
1

(Xt) = r - 1, where r is the number of irreducible 

components of r. We are going to proof the following 

generalization of theorem (4.4.1): 

Theorem Let X f S be a smoothing of a (reduced, 

equidimensional and) weakly normal space (germ) X. 

Let X = f-l(t), t#O, be its Milnor fibre and r the number of 
t 

irreducible components of X. Then: 

Fora hypersurface one has eguality. 

The proof will be along the lines of [G-S]. 



(4.4.2) Notation & Topological description 

Let X be a fixed contractible Stein representative of a reduced 

and eguidimensional germ (X,p). 

We consider a smoothing of X over a smooth curve (germ) S: 

X X 

1 
{O} s 

We also assume that Xis contractible and Stein. Remark that in 

this situation we have that Xis normal: Sing(X) c E := Sing(X), 

so this is of codimension ~ 2. Further depthE(X) ~ 1, so we have 

depthE (X) ~ 2 

To study the Milnor fibre Xt := f- 1 (t), t~O, it is convenient 

to take an embedded resolution of X in x. So we get a space y 
together with a proper map y TI X with the following 

properties: 

1) y - TI-l(E) __ _. X - E. 

2) Y:=(fgTI)- 1 (0) is anormal crossing divisor. 

3) y is smooth. 

After a finite base change we may assume that Y is reduced. 

(Semi-stable reduction.) 

In Y we find in general three types of divisors: 

a) X, the strict transform of X. 

b) F, a set of non-compact divisors, mapping properly to E. 
-l t d 0 

• c) E = TI (p), a compac 1v1sor. 

(c.f. with the situation in (2.6.?)). 

-1 The Milnor fibre Xt is via TI isomorphic to Yt:=(fgTI) (t) c y. 
In a semi-stable family this Milnor fibre Yt "passes along" every 

component of Y just once. One can find a "contraction" 

y 

of the Milnor fibre Yt on the special fibre Y (see [Cl],[Stee 1]). 

Now we can use the Leray spectral sequence for c to find the 

beginning of an exact sequence: 
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Leray: 

0 

Here we have used the easily verified formulas: 

C,c<Cy = <Cy 
1 t 

R c*<CY = <Cyl0l/<Cy 
t 

ylOI: = U Yi , where Yi are the irreducible components of Y. (The 

sheaf <Cyl0I is considered on Y.) 

We note that there are two other exact sequences in which H1 (Yt) 

appears: 

Milnor's Wang sequence Csee [Mi]. p. 67) 

0 

Here B = X - X, the total space of the Milnor fibration over 

S - {O} and h* is the monodromy transformation. 

Sequence of the pair B = !]/ - Y 

0 
a 

!JI ~ Y(~ means homotopy 

equivalence) 

ß 

d th . h. H2 ( ()t ()t - Y) ~~ HO (YIOI) Here we have use e isomorp ism ~,~ 

These three sequences fit into a single big diagram: 

l l 
Hl(Yt) H

1
(Y) 

l h*-id l 
0 H1 (Y) Hl(Yt) HO ( <CylO 1 /<Cy) ----+ H2 (Y) 

l l T T 
0 H1 (Y) H1 (B) a HO (YIOI) ß H2 (Y) 

l l 
HO(Yt) HO(Y) 
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We note that dim HO(Y) = 1. 

From this diagram we draw the following conclusions: 

(4.4.3) Conclusion: In the above sitution we have: 

1) dim H
1

(B) = dim H1 (Y) + dim ker ß. 

2) dim H
1

(Yt) ~ dim H
1

(B) - 1, and eguality holds if H1 (Y) = 0. 

3) If H
1

(Y) = 0, then the monodromy acts trivially on H1 (Yt). 

We now study the parts H1 (Y) and ker ß separately. 

(4.4.4) 

result is: 

1 The group H (Y). If Xis a plane curve singularity, 

then one can compute dim H1 (Y). The 

dim H1 (Y) = 2.g + b 

where g is the sum of the genera of the compact components of Y 

and bis the number of cycles in the dual graph of Y. (These 

numbers g and bare invariants of the limit Mixed Hodge Structure 

on H
1

(Xt); one has b = dim Gr~ GriH
1

(Yt), g = dim Gr~ Gr!(Yt) , see 
[Stee 1].). By taking Xx ~ we can construct (trivial) examples of 

irreducible surfaces with H1 (Xt) arbitrarily high. 0nly in the 

case that Xis an ordinary double point, one has H1 (Y) = 0. It 

turns out that it is exactly the weak normality of x0 that forces 

H1 (Y) to vanish. 

(4.4.5) 

:y 

1) 

1T 

:y 

Proposition: 

X be map such 

2) 1T/Ö:y ~ (!)X. 

Then one has: 

Let X 
f S be a flat deformation 

-1 of a weakly normal X= f (0). Let 

that: 

X - t, t = Sing(t) 

proof: This is the crucial point and the argument is the same 

as in [G-S]. First look at the exact seguence 

0 
t 0 

Here t is a local parameter on Sand Y is the fibre over 0. Taking 



the direct image of the above seguence gives a diagram: 

0 ----+ 1T * ():y 
t 

1T *():Y 
1 t 1 ----+ ----+ 1T *()Y ----+ R ,r *o :y ----+ R ,r *o:Y ----+ 

r 
t 

l l 
0 ----+ ()X ()X ()X 0 

By assumption ,r*():Y ~()X. From this it follows that the sequence 

1 
0 ---+ o X ---+ ,r *oY ----+ R ,r *() :y 

t 

is also exact. We claim that oX ~ ,r*()Y. Note that by condition 2) 

we have that the fibres of 1r are connected. Consider a section 

g e 1r*oY, or what amounts to the same, a funcion on Y. As 

the 1r-fibres are compact and connected, this function is constant 

along the 1r-fibres. Hence g can be considered as a continous 

function on X, which is holomorphic on Y - 1r-1 (r)----+ X - E. 

Because we assumed X tobe weakly normal, g e ()X. So we have 

indeed oX _,.. ,r*()Y. Because the map 1r is an isomorphism outside 

1:, the coherent sheaf R11r*o:Y has as support a set contained in I. 

By the last exact sequence t acts inje~tively R
1

1r*o:Y. Ast 

vanishes on I (c X) we conclude that R ,r*():Y 0. • 

(4.4.6) Corollary Let C be a weakly normal curve singularity 

and X the total space of a flat 

deformation X 

stated as (2.5.7). 

S of C. Then Xis weakly rational. This was 

(4.4.7) Proposition: With the notation of (4.4.2) we have: 

X weakly normal • H
1

(Y) = 0 

proof The embedded resolution map :y __ ___. X clearly 

fulfils condition 1) of (4.4.5). It also fulfils 

condition 2), 

i: X - I 
:y - 1T-1(1:) 

according to 

because X is normal, hence ()X --+ i*()X-I where 

Xis the inclusion map. Because 

x - I, i t follows that ,r*():Y ~ ()X . Now 

(4.4.5) we have R11r*o:Y = 0, in other words: 

Hl (o:y) = 0 

From the exponential seguence 

0 0 
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and the similar sequence for X and the fact that ()X ::: 7r,p
31 

then follows that: 
1 

H (3/,Z!J/) = 0 

As ;J/ is contractible to Y, we have H1 (Y,Z) = O 

(4.4.8) The kernel of ß. 

In the big diagram of (4.4.2) there was a map ß 

Ho(Y[Ol,Z) ß H2 (;J/,Z) (= H2 (Y,Z)) 

it 

This map works as follows: Elements of the first groups can be 

considered as divisors I: ai. Yi wi th support on Y. (The Yi are the 

irreducible components of Y.) Then one has: 

ß(~ n .. Y.) = first ehern class of the line bundle determined by 
'- 1 1 

the divisor I: ni .Yi 

So the map ß factorizes over the map ~ which associates to a 

divisor its line bundle: 

We first study the map ~- Note that if H
1

((J;J/) = 0, then we have 

ker ~ = ker ß. 

• 

(4.4.9) Definition Let (X,p) be a germ of anormal analytic 

space. The local class group is the group 

Clp(X) = {(germs of) Weil divisorsJ/{(germs of) principal divisorsJ 

(4.4.10) Proposition 

columns: 

With the notation as in (4.4.2) there 

is a diagram with exact rows and 
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0 0 

1 1 
ker t/J ker r 

1 1 
0 -- _ __, 0 HO(FIOI) HO (Y 101) HO (X 101) 

l rl 
0 _ __, ---, 0 

t/J 1 
HO(F[0J) Hl(<Dg;) Clp(X) 

H F [OI yl0I\ X~ ( • t t . h ere = so 1 con ains t e components Fand E of 
IOI (4.4.2)) and X = LI X. , where the X. are the irreducible 

1 1 

components of X. The maps are the obvious ones. 

proof: Th . t' 1( "' 1 "' e surJec 1On of H <Dg;) (or better of R 1r"'<Dg;) to the 

local class group is obvious: pulling back a Weil 

divisor on X gives a Cartier divisor on g; (hence a line bundle) 

that maps down to the original Weil divisor, as the map 1r is a 

modification in codimension ~ 2 (c.f. [Mu]). The main point is to 

show that the kerne! of the bottom row is not bigger, or what 

amounts to the same, that ker t/J ~ ker r. Let A = ""' a .. Y. be in the 
L.. 1 1 

kerne! of t/J. We may assume that a. ~ 0. Hence there is a function 
1 

g e HO(<Dg;) with (g) = A. By the normality of X we have <Dx = 1r*<Dg;, 

sog can be considered as holomorphic on X, having of course as 

divisor on X just (the image) of that part of A that does not 

involve F 101 • This gives the map ker t/J ____,. ker r. This map is 

injective because if the divisor of g (on X) would be zero, g 

would be a unit, hence A = 0. Surjectivity follows by pulling back 

functions. • 

The use of (4.4.10) is that we get rid of the global object g; 
In (4.4.2) we used a base change to arrive at a semi-stable 

family. The kerne! of the map r is essentially independent of this 

base change: 

Consider anormal space X and a reduced 

principal divisor X c x. Let x 101 ~ LI Xi 

where the Xi are the irreducible components of X. Let X be 

(4.4.11) Lemma 
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obtained from X by taking a d-fold cyclic cover branched 
0 [O] N O [O) N 

Let r :H (X ) ___..., Cl (X) I r : H (X ) ___..., Cl (X) be 
o p N p 

obv1ous maps. Then ker(t) ® ~ = ker(t) ® ~ 

proof : Excercise. 

We summarize the above results in one theorem: 

along X. 

the 

(4.4.12) Theorem Let X f 
S be (a contractible Stein 

• 

representative of) a smoothing of a reduced 

germ (X,p). Let Xt = f- 1 (t), tiO, be its Milnor fibre. 

Let XIOI = U xi , whe th X th · d · bl re e i are e irre uc1 e components. 

Let -v •• HO(XIOI) Cl ( ) h o p X bete obvious map. 

Then one has: 

1) b1(Xt) ~ rank (ker r) - 1. 

2) If Xis weakly normal, then one has eguality: 

In particular, when Xis a hypersurface, rank ker r is egual to 

the nurnber of irreducible components of X. 

Fora hypersurface germ X in c 3 with a 

complete intersection as singular locus and 

transversal type A
1 

it is known that the first Betti nurnber b
1

(Xt) 

is zero or one (see [Sie 2], [Str]). So the nurnber of irreducible 

(4.4.13) Remark 

components of Xis one or two. To put it in another way, the 

singular locus of a weakly normal hypersurface in c 3 which has 

more than three components is never a complete intersection. 

J. Stevens has shown that all degenerate 

cusps are smoothable (private 

cornrnunication). What is the first Betti nurnber for these 

smoothings? Is the first Betti number an invariant of X? (Probably 

(4.4.14) Question 

not, but at this moment I do not have computed any non-trivial 

example.) 



[Ab] 

[Ad 1] 

[Ad 2] 

[Arn 1] 

[Arn 2] 

[Art] 

[A-B] 

[A-G-V] 

[A-H] 

[A-K] 

[A-L] 

(A-N] 

REFERENCES 

ABHYANKAR, S., Resolution of Singularities of Algebraic 

Surfaces, In: Algebraic Geometry, 1-11, (Oxford 

University Press, London, 1969). 

ADKINS, W., Seminormal Surfaces, J. of Alg.67, (1980), 

369-377. 

ADKINS, W., Weak Normality and Lipschitz Saturation for 

Ordinary Singularities, Comp. Math. 51, (1984), 

149-157. 

ARNOL'D, V., Critical points of Smooth Functions, In: 

Proc. Int. Congr. Math. Vancouver 1974, Vol 1, 

19-37. 

ARNOL'D, V., Singularity Theory, selected papers, 

London Math. Soc. Lecture Notes Series 53, 

(Cambridge University Press, 1981). 

ARTIN, M., On Isolated Rational Singularities of 

Surfaces, Am. J. Math 88, (1966), 129-136. 

ANDREOTTI, A. & E. BOMBIERI, Sugli Omeomorfismi delle 

Varieta Algebriche, Ann. Sc. Norm. Sup. Pisa 

23, (1969), 430-450. 

ARNOL'D, V., S. GUSEIN-ZADE & A. VARCHENKO, 

Singularities of Differentiable Maps, Vol 1, 

Monographs in Math.82, (Birkäuser, Basel&, 1985). 

ANDREOTTI, A. & P. HOLM, Quasi Analytic and Parametric 

Spaces, In: Real and Complex Singularities, Oslo 

1976, 13-97, (Sijthoff & Noordhoff, Alphen a/d Rijn, 

1977). 

ALTMAN, A. & S. KLEIMAN, Introduction to Grothendieck 

Duality Theory, Lecture Notes in Math. 146, 

{Springer, Berlin&, 1970). 

ADKINS, W. & LEAHY, J., A Topological Criterion for 

Local Optimality of Weakly Noramal Complex Spaces, 

Math. Ann. 243, (1979), 115-123. 

ANDREOTTI, A. & F. NORGUET, La Convexite Holomorphe 

dans 1' Espace Analytique des Cycles d'une Variete 

Algebrique, Ann. Sc. Norm. Sup. Pisa 21, {1967), 

31-82. 



[Ba] BAKER, H., Examples of the Applications of Newton's 

[Br) 

[B-G] 

[B-K] 

[B-P-V] 

Polygon to the Theory of Singular Points of 

Algebraic Functions, Trans. Camb: Phil. Soc. 

15, (1894), 403-450. 

BRIESKORN, E., Rationale Singularitäten Komplexer 

Flächen, Inv. Math. 6, (1967/68), 336-358. 

BUCHWEITZ, R.-0. & G.-M. GREUEL, The Milnor Number and 

Deformations of Complex Curve Singularities, Inv. 

Math 58, (1980), 241-281. 

BRIESKORN, E. & H. KNöRRER, Ebene Algebraische Kurven, 

(Birkhäuser, Basel&, 1981.) 

BARTH, W., C. PETERS & A. VAN DE VEN, Compact Complex 

Surfaces, Ergebnisse der Math.&, 3. Folge, Bd. 4, 

(Springer, Berlin&, 1984). 

[Ca) CARTAN, H., Quotients of Complex Analytic Spaces, In: 

[Cl] 

[C-G] 

[C-M] 

H. Cartan: Oeuvres, ed. R. Remmert & J.-P. Serre, 

(Springer, Berlin&, 1979). 

CLEBSCH, A., In: Cornpt. Rend. Acad. Sc.(21 dec. 1868), 

p.1238. 

CLEBSCH, A. & P. GORDAN, Theorie der Abelschen 

Functionen, (Teubner, Leipzig, 1866). 

CUMINO, C. & M. MANARESI, On the Singularities of 

Weakly Normal Varieties, Manus. Math. 33, (1981), 

283-313. 

[Do] DOLGACHEV, I., Cohomologically Insignificant 

[DuB] 

[Dur] 

[DuV] 

Degenerations of Algebraic Varieties, Cornp. Math. 

42, (1981), 279-313. 

DU BOIS, P., Complexe de de Rham Filtre d'une Variete 

Singuliere, Bull. Soc. Math. France 109, (1981), 

41-81. 

DURFEE, A., Fifteen Characterizations of Rational 

Double Points and Simple Critical Points, L'Ens. 

Math. 25, (1979), 131-163. 

DU VAL, P., On Isolated Singularities of Surfaces which 

do not Affect the Condition of Adjunction, Proc. 

Camb. Phil. Soc. 30, (1933/34), 453-491. 

[El] ELKIK, R., Singularites Rationelles et Deformations, 

Inv. Math. 47, (1978), 139-147. 



[Es] ESNAULT, H., Fibre de Milnor d'un Cöne sur une Courbe 

Plane singuliere, Inv. Math. 68 (1982), 477-498. 

[Fi] FISCHER, G., Complex Analytic Geometry 1 Lecture Notes 

in Math. 538, (Springer, Berlin &1 1976). 

[Go] G0RENSTEIN, D. 1 An Arithmetic Theory of Adjoint Plane 

Curves, Trans. Am. Math. Soc. 72, (1952), 414-436. 

[Gr] GR0THENDIECK, A. 1 Local Cohomology 1 Lecture Notes in 

Math. 41, (Springer, Berlin &1 1967). 

[Gu] GUNNING, R. 1 Lectures on Complex Analytic Varieties: 

[G-H] 

[G-Re] 

[G-Ri] 

[G-S] 

[G-T] 

[Ha 1] 

[Ha 2] 

Finite Analytic Mappings 1 (Princeton Univiversity 

Press, 1974). 

GRIFFITHS, P. & J. HARRIS, Principles of Algebraic 

Geometry 1 (Wiley Interscience, N.Y. 1 1978). 

GRAUERT, H. & R. REMMERT, Coherent Analytic Sheaves 1 

Grundlehren der Math. 265, (Springer, Berlin &1 

1984). 

GRAUERT, H. & 0. RIEMENSCHNEIDER, Verschwindungssätze 

für Analytische Kohomologiegruppen auf Komplexen 

Räumen, Inv. Math. 11, (1970), 263-292. 

GREUEL, G.-M. & J. STEENBRINK, On the Topology of 

Smoothable Singularities 1 In: Singularities, Arcata 

1981, Proc. Symp. Pure Math. Vol. 40, Part l, (1983), 

535-543. 

GREC0, S. & C. TRAVERS0, On Seminormal Schemes, Comp. 

Math. 40 1 (1980), 325-365. 

HARTSH0RNE, R., Residues and Duality, Lecture Notes in 

Math. 20, (Springer, Berlin &1 1966). 

HARTSH0RNE, R., Algebraic Geometry, Graduate Texts in 

Math. 52, (Springer, Berlin&, 1977). 

[Hi] HIR0NAKA, H., Resolution of Singularities of an 

Algebraic Variety over a Field of Characteristic 

Zero, Ann. of Math. 79, (1964), 109-326. 

[Ho] H0DGE, W., The Isolated Singularities of an Algebraic 

[Is l] 

Surface, Proc. London Math. Soc. 30, (1930), 

133-143. 

ISHII, s., On isolated Gorenstein Singularities, Math. 

Ann. 270, (1985), 541-554. 



[Is 2] 

[K-S] 

[Kl] 

[Lak] 

[Lau 1] 

[Lau 2] 

[Lau 3] 

[Li] 

ISHII, S., Du Bois Singularities on a Normal Surface, 

Advanced studies in Pure Math. 

KOLLAR, J. & N. SHEPHERD BARRON, to appear. 

KLEIN, F., Vorlesungen über das Ikosaeder und die 

Auflösung der Gleigungen vom Fünften Grade, 

(Teubner, Leipzig, 1884). 

LAKSOV, D., Deformation of Determinantal Schemes, Comp. 

Math. 30, (1975), 273-292. 

LAUFER, H., Normal Two-Dimensional Singularities, 

Annals of Math. Studies 71, (Princeton University 

Press, 1971). 

LAUFER, H., On Rational Singularities, Am. J. Math. 

94, (1972), 597-608. 

LAUFER, H., On Minimally Elliptic Singularities, Am. J. 

Math. 99, (1977), 1257-1295. 

LIPMAN, J., Rational Singularities with Applications to 

Algebraic Surfaces and Unique Factorization, Publ. 

Math. I.H.E.S. 36, (1969), 195-279. 

[Lo] LOOIJENGA, E., Isolated Singular Points on Complete 

Intersections, London Math. Soc. Lecture Notes 

Series 77, (Cambridge University Press, 1984). 

[Ma] MANARESI, M., Some Properties of Weakly Normal 

Varieties, Nagoya Math. J. 77, (1980), 61-74. 

[Mi] MILNOR, J., Singular Points of Complex Hypersurfaces, 

Ann. of Math. Studies 61, (Princeton University 

Press, 1968). 

[Mo] MOND, D., On the Classification of Maps from !R2 to !R3, 

Proc. Lond. Math. Soc.(3) 50, (1985), 333-369. 

[Mu] MUMFORD, D., The topology of Normal Singularities of an 

[M-T] 

Algebraic Surface and a Criterion for Simplicity, 

Publ. Math. I.H.E.S. 9, (1961), 5-22. 

MERLE, M. & B. TEISSIER, Conditions d'Adjonction 

d'apres Du Val, In: Seminaire sur les Singularites 

des Surfaces, Lecture Notes in Math. 777, (Springer, 

Berlin &, 1980). 

[Na] NARASHIMAN, R., Introduction to the Theory of Analytic 

Spaces, Lecture Notes in Math. 25, (Springer, Berlin 

&, 1966). 



[No] NOETHER, M., Zur Theorie des Eindeutigen Entsprechen 

Algebraischer Gebilde von Beliebig Vielen 

Dimensionen, Math. Ann. 2, (1870), 293-316. 

[Pe] PELLIKAAN, R., Hypersurface Singularities and 

Resolutions of Jacobi Modules, Thesis, Rijks 

Universiteit Utrecht, (1985). 

[Ri] RIEMENSCHNEIDER, 0., Familien Komplexer Räume mit 

[R-R] 

[R-R-V] 

[ Sa] 

[Scha 1] 

[Scha 2] 

[Schl] 

[Se] 

[ Sh] 

[Sie 1] 

Streng Pseudokomplexer Spezieller Faser, Comm. Math. 

Helv. 51, (1976), 547-565. 

RAMIS, J. & G. RUGET, Complex Dualisant et Theoremes de 

Dualite en Geometrie Analytique Complexe, Publ. 

Math. I.H.E.S. 38, (1971), 77-91. 

RAMIS, J., G. RUGET & J.-L. VERDIER, Dualite relative 

en Geometrie Analytique Complexe, Inv. Math. 

13 I ( 1971), 261-283 • 

SAITO, M., On the Exponents and the Geometrie Genus of 

an Isolated Hypersurface Singularity, In: 

Singularities, Arcata 1981, Proc. Symp. Pure Math. 

Vol. 40, Part 2, (1983), 465-472. 

SCHAFS, M., Deformations of Cohen-Macaulay Schemes of 

Codimension Two and Non-singular Deformations of 

Space curves, Am. J. Math. 99, (1977), 669-685. 

SCHAFS, M., Versal Determinantal Deformations, Pacific. 

J. Math. 107 (1), (1983), 213-221. 

SCHLESSINGER, M., Rigidity of Quotient Singularities, 

Inv. Math. 14, (1971), 17-26. 

SERRE, J.-P., Groupes Algebriques et Corps de Classes, 

(Hermann, Paris, 1959). 

SHEPHERD-BARRON, N., Degenerations with Numerically 

Effective Canonical Divisor, In: The Birational 

Geometry of Degenerations, Progress in Math. 29, 

(Birkhäuser, Basel,&, 1983). 

SIERSMA, D., Isolated Line Singularities, In: 

Singularities, Arcata 1981, Proc. Symp. Pure Math. 

Vol.40, Part 2, (1983), 485-496. 



[Sie 2] 

[Siu] 

[S1] 

[Stee 1] 

[Stee 2] 

[Stee 3] 

[Stee 4] 

[Stee 5] 

[Stev 1] 

[Stev 2] 

[Str] 

SIERSMA, D., Hypersurface Singularities with Critical 

Locus a One-Dimensional Isolated Complete 

Intersection Singularity and Transversal Type A
1

, 

Preprint 407, Rijks Universiteit Utrecht, (1986). 

SIU, Y.-T. Analytic Sheaf Cohomology Groups of 

Dimension n of n-Dimensional Complex Spaces, Trans. 

Am. Math. Soc. 143, (1969), 77-94. 

SLODOWY, P. Simple Singularities and Simple Algebraic 

Groups, Lecture Notes in Math. 815, (Springer, 

Berlin&, 1980). 

STEENBRINK, J., Mixed Hodge Structure on the Vanishing 

Cohomology, In: Real and Complex Singularities, Oslo 

1976, 525-563, (Sijthoff & Noordhoff, Alphen a/d 

Rijn, 1977). 

STEENBRINK, J., Cohomologically insignificant 

degenerations, Comp. Math. 42, (1981), 315-320. 

STEENBRINK, J., Mixed Hodge Structures Associated with 

Isolated Singularities, In: Singularities, Arcata 

1981, Proc. Symp. Pure Math. Vol 40, Part 2, (1983), 

513-536. 

STEENBRINK, J., Semicontinuity of the Singularity 

Spectrum, Inv. Math. 79, (1985), 557-565. 

STEENBRINK, J., Singularities and Hodge Theory, Notes 

for the Dutch Singularity Seminar, to appear. 

STEVENS, J., Kulikov Singularities, a Study of a Class 

of Complex Surface Singularities with their 

Hyperplane Sections, Thesis, Rijks Universiteit 

Leiden, (1985). 

STEVENS, J., Improvements of Surface Singularities, 

Preprint 455, Rijks Universiteit Utrecht, (1987). 

STRATEN, D. VAN, On the Betti Numbers of the Milnor 

Fibre of a Class of Hypersurface Singularities, To 

appear in: Proceedings of the Lambrecht Conference 

on Vector Bundles, Representations of Algebras and 

Singularities, 1985, (Springer, Berlin&, 1987). 



[S-SJ 

[S-TJ 

STRATEN, D. VAN & J. STEENBRINK, Extendability of 

Holomorphic Differential Forms near Isolated 

Hypersurface Singularities, Abb. Math. Sem. Univ. 

Hamburg 55, (1985), 97-110. 

SIU, Y.-T. & G. TRAUTMANN, Gap sheaves and Extension ·of 

Coherent Analytic Subsheaves, Lecture Notes in Math. 

172, (Springer, Berlin&, 1971). 

[Te] TEISSIER, B., Resolution Simultanee, In: Seminaire sur 

les Singularites des Surfaces, Lecture Notes in 

Math. 777, (Springer, Berlin&, 1980). 

[TjJ TJURINA, G., Absolute Isolatedness of Rational 

[ViJ 

[WagJ 

[Wah lJ 

[Wah 2J 

[Za lJ 

[Za 2] 

Singularities and Triple Rational Points, Funct. 

Anal. Appl. 2, (1968), 324-332. 

VITULLI, M., The Hyperplane Section of Weakly Normal 

Varieties, Am. J. Math. 105, (1983), 1357-1368. 

WAGREICH, P., Elliptic Singularities of Surfaces, Am. 

J. Math. 99, (1970), 419-454. 

WAHL, J., Equations Defining Rational Singularities, 

Ann. Sc. Ec. Norm. Sup. 4ieme Serie, Tome 10, 

(1977), 231-264. 
WAHL, J., Simultaneous Resolutions and Discriminant 

Loci, Duke Math. J. 46 (2), (1979), 341-375. 

ZARISKI, 0., The Reduction of the Singularities of an 

Algebraic Surface, Ann. of Math. 40, (1939), 639-689. 

ZARISKI, 0., Algebraic Surfaces, (Second suppl. ed.), 

Ergebnisse der Math. &, 2. Folge, Bd. 61, 

(Springer, Berlin&, 1971). 



AWN 

Canonical cycle 

Cartier model 

Codefect 

Cohen-Macaulay 

Conductor 

CM 

CM-ification 

Curves of type k 

Cycle 

Defect 

Degenerate cusp 

INDEX 

Delta-invariant (of a reduced curve) 

(of a curve with torsion) 

Determinantal singularity 

Dualizing complex 

Duality isomorphism 

Du Bois singularity 

Elementary transformation 

Exceptional curves of the first kind 

Fundamental Cartier divisor 

Genus of a space 

Geometriegenus (of an isolated singularity) 

(of an AWN-surface germ) 

Gorenstein 

Good improvement 

Improvement 

Local class group 

Minimal improvement 

Minimally elliptic singularity 

Modification (e-) 

(n-) 

Normal 

Partition singularity 

Push-out 

Resolution 

(1.1.7) 

(3.3.15) 

(3.2.14) 

(2.2.2) 

(1.1.1) 

(1.2.11) 

(1.1.1) 

(1.1.4) 

(l.4.10) 

(3.1.2) 

(2.2.1) 

(4.3.6) 

( 1. 2. 23) 

(2.1.9) 

(1.3.9) 

(1.1.1) 

(2.2.2) 

(4.3.1) 

(3.2.11) 

(1.4.1) 

(3.1.1) 

(2.2.4) 

(2.2.4) 

(2.3.1) 

(1.1.1) 

( 1. 4 .12) 

(1.4.2) 

(4.4.9) 

(1.4.11) 

(4.2.3) 

(3.2.14) 

(3.2.17) 

(1.1.2) 

(1.3.1) 

(1.2.2) 

(1.4.1) 



Root 

Root graph 

Root model 

Series 

Special lines 

Special roots 

Stable model 

Type 

Universal property (of normalization) 

(of weak normalization) 

(of the push-out) 

Weakly canonical cycle 

Weakly minimal 

Weakly normal 

Weakly smooth 

Weakly rational (for a WNCM-surface germ) 

(for an AWN-surface germ) 

Weakly rational double and triple points 

WN 

WNCM 

WRDP 

(3.4.1) 

(3.4.7) 

(3.4.6) 

(3.4.33) 

(1.3.2) 

(3.4.5) 

(3.4.28) 

(1.1.1) 

(1.1.2) 

(1.1.3) 

(1.2.2) 

(3.3.15) 

(1.4.4) 

(1.1.3) 

(1.4.4) 

(4.1.1) 

(2.5.1) 

(4.1.24) 

(1.1.3) 

(1.1.7) 

(4.1.24) 



SAMENVATTING 

Dit proefschrift heeft een speciale klasse van complexe oppervlak 

singulariteiten tot onderwerp, te weten de klasse van de 

zwak normale (Cohen-Macaulay) oppervlak singulariteiten. Deze 

singulariteiten kunnen bestudeerd worden met methoden die analoog 

zijn met die welke doorgaans voor normale oppervlak 

singulariteiten gebruikt worden. Van fundamenteel belang is het 

begrip verbetering van een zwak normale oppervlak singulariteit. 

Dit begrip werd door N. Shepherd Barron ingevoerd en is het 

analogen van het begrip resolutie van een normale oppervlak 

singulariteit. Een verbetering is in tegenstelling tot een 

resolutie niet glad, maar bevat in het algemeen zogenaamde 

partitie singulariteiten. Met behulp van een verbetering kan men 

een invariant van een zwak normale oppervlak singulariteit 

invoeren die het meetkundig geslacht genoemd wordt. Een 

belangrijke eigenschap van deze invariant is zijn boven half 

continuiteit onder platte deformaties over een gladde basis 

kromme. Op een verbetering kan men op de gebruikelijke wijze met 

een-cykels rekenen, maar om tot een bevredigende theorie van de 

fundamentele cykel te komen is het in het algemeen noodzakelijk om 

door middel van opblazen naar een zogenaamd stabiel model over te 

gaan. Van belang is het daarbij behorende wortel rooster. Het 

vermoeden wordt uitgesproken dat de bij het wortel rooster 

behorende graaf een resolutiegraaf is van een normale oppervlak 

singulariteit. Wanneer de cykel theorie ver genoeg ontwikkeld is, 

kan men eenvoudig de reeds bekende resultaten over rationale en 

minimaal elliptische singulariteiten generaliseren tot zwak 

normale oppervlak singulariteiten. Hierbij dient opgemerkt te 

worden dat niet-geisoleerde zwak normale Cohen-Macaulay oppervlak 

singulariteiten met meetkundig geslacht gelijk aan nul niet 

rationaal zijn in de gebruikelijke zin van het woord. 

Het blijkt dat irreducibele zwak normale ruimten de eigenschap 

hebben dat het eerste Betti getal van de vezel in een vergladding 

nul is. Dit resultaat was al eerder bekend voor normale 

geisoleerde singulariteiten. 
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